Preface

The field of computer graphics has experienced a number of hardware and software
revolutions since the early 1970’s when these notes began. The intentions of these notes now, -
however, are very much the same as then, to provide students with a basic knowledge of, and
practical experience with, the fundamental mathematics, algorithms and representations that are
needed to develop interactive computer graphics applications.

The chapters are arranged in an order that progresses from hardware to software, from two
dimensions (2D) to three dimensions (3D), and from simple geometric forms to the more complex
curves, surfaces and solids. At times, this causes some topics to be re-visited, such as clipping and
transformations in 2D and 3D. This order was chosen to facilitate what the author considers to be
a more natural topical progression for learning. Students accumulate knowledge and experience
with somewhat simpler topics first, such as 2D programming techniques, and then are ready to
combine these with the later topics that are more mathematically and computationally challenging.

Computer graphics and computer programming are inseparable. Typically in the course
that uses these notes, four programming projects are assigned over sixteen weeks, each project
requiring three to four weeks, coinciding as much as possible with the lecture topics. The goals of
the projects are to give the student in-depth practice with the concepts while designing, coding and
debugging a relevant and non-trivial application. Typically, the project.topics are (1) basic 2D
display with minor interaction, (2) fully interactive 2D drawing requiring dynamic data structures
and color, (3) the wireframe 3D pipeline with projection, 3D clipping, and hierarchical
transformations with little interaction, (4) 3D hidden surface removal and shading, such as scan-
line rendering or ray tracing. The code for the first project is usually given to the students to
demonstrate basic graphical programming techniques. This has proven to be effective in speeding
the learning of programming details as well as various operating system and graphics package
minutia, paving the way for more concentration on mathematical and algorithmic concepts.

Over the past two decades, there have been four generations of graphics devices used for
the projects, starting with the Imlac™ minicomputer vector display system, progressing through
Megatek™ 3D vector systems, and now raster graphics workstations and personal computers. Each

new display technology spawned a new generation of graphics programming package. Such is the
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case for the GRAFIC package, the current version of which was developed during the first days of
X Windows™ (version 10) to support the teaching of computer graphics. GRAFIC was designed
to provide basic, multi-language (initially C, Pascal and Fortran; and now C++ as well), multi-
platform access to window-based raster graphics. An important objective during the development
of GRAFIC was that its use should require little training in the package itsclf. Now, versions of
GRAFIC exist for X Windows™ for Unix™ workstations, IBM-compatible personal computers
with Microsoft Windows™, and Apple Macintosh™ computers. GRAFIC 1s available as-is and
free of charge from the author.

There are many individuals who have contributed to these notes over the vears. Michael
Bailey taught the course Interactive Computer Graphics with the author for several vears,
established some of the early topics, and developed some of the early versions of the written notes.
Warren Waggenspack contributed significantly to the presentation of curves and surfaces while at
Purdue, and has been a valued collaborator who has encouraged continued work on the notes by
the author. Philip Cunningham helped with the presentation of the reflectance and shading models.
Joseph Cychosz contributed to the presentation on color and some of the ray casting algorithms.
Gregory Allgood implemented the first versions of X Windows™ GRAFIC. To these individuals,

the author extends sincere appreciation for their invaluable help.

David C. Anderson
Purdue University

internet: http://www.cadlab.ecn.purdue.edu/~dave/
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Chapter 1. Introduction

1.1 Historical Perspective

Computer graphics began in the late 1950’s, developed primarily in the large aircraft and
automobile industries. These were the only industries that could afford such expensive technology
and the only ones whose massive operation could justify the equipment and development costs and
effort.

In the early 1960’s, Dr. Ivan Sutherland introduced the age of interactive computer graphics
for engineering appliéations with his Ph.D. dissertation: “SKETCHPAD: A Man-Machine
Graphical Communication System.” His work demonstrated various ways that interactive graphics
could revolutionize engineering and other application areas.

During the 1970’s, advances in computer hardware caused the cost of computing to decline
dramatically, making computer graphics applications more cost effective. In particular, computer-
aided design (CAD) systems flourished in the 1970’s with storage tube terminals and
minicomputers, causing a dramatic increase in computer graphics users and applications.

The 1980’s became the age of the workstation, which brought together computing,
networking and interactive raster graphics technology. Computer graphics technology followed the
way of computers, rapidly changing from add-on graphics devices to integral raster graphics
workstations. Raster graphics systems and window-based systems became the standard.

In the mid-1980’s, personal computers consumed the computing and graphics markets and
quickly dominated the attention of nearly all graphics applications. The pervasiveness of the PC’s
made software developers flock to them. By the end of the 1980’s, personal computer software was
arguably the center of attention of the software developer community. Workstations also thrived
as higher-end computing systems with strengths in networking and high-end computation. PC’s,
however, vastly outnumbered any other form of computer and became the mainstream graphics
delivery system.

Today, computer graphics equipment and software sales are a billions of dollars per year
marketplace that undergoes rapid performance and capability improvements annually. Some of
today's most popular applications are:

- Mechanical design and drafting (“CAD/CAM”)
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- Electronic design and circuit layout

- Natural resource exploration and production

- Simulation

- Chemical and molecular analysis

- Entertainment, such as animation, advertising, and communications

- Desktop publishing

1.2 Notes Overview

The objective for these notes is to study the principles of computer graphics from the points
of view of both a developer and a user. Emphasis will be on understanding computer graphics
devices, mathematics, algorithms, representations, methods, and software engineering for
designing and implementing interactive computer graphics applications in two and three
dimensions. Computer graphics is not an isolated field. Computer graphics algorithms lie at the
foundation of many applications in science and engineering and the elements of computer graphics
provide basic knowledge useful in other fields.

We will begin by studying several categories of computer graphics devices, beginning with
static graphics without interactive capabilities, and ending with dynamic graphics with motion
simulation capabilities. In each general category, we will discuss how it operates, typical
configurations with a computer, fundamental graphics algorithms needed to produce images, and
applications.

After gaining an understanding of basic graphics devices and capabilities, the notes move
into higher-level topics that are more mathematical and algorithmic in nature, beginning with
three-dimensional rendering. The last chapters address geometric modeling topics related to both

computer graphics and computer-aided design.

1.3 Notation

Throughout the text, the following notation will be used.

a,b,c scalar numbers (lower case plain text)
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P, Q; position vectors (upper case plain text, letters P or Q, possibly subscripted)
V, Vi direction vectors (upper case plain text, letter V, possibly subscripted)
M, M; matrix (upper case bold)
[B] tensor or matrix made from elements of B
0,0 angles (lower case Greek)
[xyzw]
[x,y,z,W] row or column vector with explicit coordinates (with or without commas)
IF var Computer language statements and references in the text to computer

variables and symbols.
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Chapter 2. Static Graphics Hardware

The term “static graphics” describes a class of computer graphics hardware and software in
which images are created but cannot be erased. Static graphics applications are not interactive.
Generally, static graphics applications involve hardcopy output, such as plotting and printing.

Historically, these types of devices were among the first in computer graphics.

2.1 Plotters

Pen plotters are electromechanical devices that draw on paper and other maternials. Some
past and present manufacturers include companies like Calcomp, Houston Instruments, Hewlett
Packard and Tektronix. Prices range from $2,000 to over $50,000 according to speed, accuracy,
and local intelligence.

Local Intelligence means the plotter has capabilities for:

1. arcs and circles,

2. dashed lines,

3. multiple pens,

4. scaling, rotations, character generation, “filling” areas, etc.

Intelligence is typically accomplished with a microprocessor in the device.
As with computers, there are typical trade-offs among speed, cost, intelligence and

accuracy.

2.1.1 Physical Arrangements

The drum plotter was one of the first computer graphics hardcopy devices (Figure 2-1).
There are three independent actions: (1) raising or lowering the pen by activating or deactivating
the solenoid and stepping the drum or carriage to produce relative motions between the paper and
the pen along the (2) X and (3) Y directions. Commands sent from a computer connected to the
plotter raise or lower the pen, and then step the pen the required number of steps in X and Y to

produce the desired effect.
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) The solenoid lifts the pen
One stepping motor on command. The pen
moves the pen carriage. is usually held down with
a spring.
&>

\\ Another stepping motor
rotates the drum.

Figure 2-1. Elements of a Drum Plotter.

_ A variation of the drum plotter that facilitates drawing on thicker materials and materials
that cannot bend is the flatbed plotter (Figure 2-2). The basic operation of the pen carriage and two

stepping motors is like the drum plotter.

pos

pen carriage with solenoid

paper held
by suction

Figure 2-2. Elements of a Flatbed Plotter.

Plotters are capable of drawing lines of different colors using multiple pen carriages (Figure
2-3). The pen carriage is rotated or translated to place the desired pen in the writing position. A
more elaborate version of a multiple pen carriage changes pens by moving the pen carriage to the
corner of the pen bed, depositing the current pen in a second pen carriage that holds extra pens,
picking up a new pen from the extra carriage, and returning to the writing position to continue

drawing.
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revolving

multi-pen ® ® @ icrell}lxiil;e pen
. oe
carriage
(top view) @ @ @ @ @ @ @

Figure 2-3. Multiple Pen Carriages.

2.1.2 Basic Operation

The pen is held in a chamber and is pressed against the paper surface by a spring. The

chamber is held inside a solenoid coil. When activated by the plotter electronics, the solenoid lifts

the pen above the plotting surface. X and Y motions are controlled by stepping motors. The

solenoid and motors are controlled by a computer. Only one step is taken at a time.

The resolution of a plotter is a measure of its accuracy, or step-size. Typical resolutions are

0.002 and 0.005 inch per step, or, as it is sometimes given, 500 or 200 steps per inch.

There are several critical factors in the design of plotters:

speed

accuracy

ink flow

The speed of a plotter is typically given in “steps per second.” The time

- required to complete a given drawing is a function of the distance travelled

by the pen, and the resolution and speed of the plotter. For example,
consider drawing an 8” by 10” box around a page using a plotter with 500
steps per inch and a speed of 500 steps per second. The time to complete the
drawing is computed as follows:

time (sec) = distance (inch) / { resolution (inch/step) * speed (step/sec) }
or,

time = (8+8+10+10) / { 0.002 * 500 }

time = 36 sec

(Note the plotter travels at 1 inch/second.)

Generally, increasing accuracy requires slower speeds and more massive
structures to maintain mechanical rigidity.

High speed plotters must force ink from the pen because gravity alone is

insufficient.
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2.1.3 Configurations

There are three basic configurations for connecting a plotter to a computer: off-line, on-
line, and spooled (buffered). Off-line configuration means the plotter is not physically connected
to the computer, so data must be manually transferred. The plotter reads plotting information from
a tape that must be loaded and unloaded periodically. The plotting programs write this information

on the tape and, at a designated time, the tape is removed and queued for the plotter.

Computer —> —»
Manually
Carry Tape

Figure 2-4. Off-line Plotter Configuration.

Plotter

On-line configuration means there is a direct data communication interface between the
computer and the plotter. As the plotting program executes in the computer, calls to plotting
routines cause “plot commands” to be sent to the plotter. The plot commands are executed by the
plotter hardware, i.e. the pen is moved. This is a typical configuration for a personal computer and

a plotter.

lot d
Computer pO* commanes P Plotter

Figure 2-5. On-line Plotter Configuration.

It usually does not make sense to configure a plotter on-line with a multi-user, time-shared
computer system because several plotting programs can be executing at once. In this case, it is
necessary to couple the two previous approaches, on-line and off-line, in a manner that allows
several plotting programs to create plot data, yet send only one program’s data at a time to the

plotter. Spooling is a method for accomplishing this.
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2.1.4 Spooling

Current time-shared systems perform a combination of off-line and on-line plotting, called
spooling. This is similar to how line printers are operated. Storing and plotting can occur
simultaneously (with proper provisions for simultaneous access to files). Plotting programs create
intermediate “plot files” when they execute. When a program finishes, the plot file is queued for
plotting, that is, transferred onto a disk area set aside for plot files waiting to be plotted. This
intermediate disk storage is a buffer between the programs creating plot data and the slower plotter,
which can only process one plot at a time. Another computer program, sometimes executing in
another computer, accesses the queued plot files periodically and sends them to the plotter. The

plotting programs are off-line with respect to the plotter, and the intermediate program is on-line.

Disk
Buffer

Intermediate
Computer [P " plocessor ™1 Plotter

Figure 2-6. Spooling Configuration.

2.2 Electrostatic Plotters

Pen plotters are relatively slow devices. Electrostatic plotting was developed as a
compromise between speed and accuracy. Electrostatic plotting is a process that, in effect, charges
small dots on a piece of paper and then immerses the paper with dry powdered ink. The ink adheres
to charged dots on the paper and falls off the rest (Figure 2-7).

One advantage of electrostatic plotting is that the printing process is almost entirely
electronic, so the problems of speed and accuracy that plague mechanical pen plotters are
eliminated. The drawback is that the resulting image must be drawn as an array of dots.

Each dot is called an electrostatic plotter point or an epp. The process involves the

computer sending data to the plotter for each line of epps. The data for a line of epps is a series of
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7

ST 7

Dry and Remove

\ .
— Applicator Writing
Head Paper Roll
o
Side View\
“epp” T Paper Motion \

00000000000

Top View of Writing Head (magnified)

Figure 2-7. Elements of an Electrostatic Plotter.

binary numbers, lor 0, representing “dot” (on) or “no dot” (off) for each writing head epp position.
The computer must compute these epps based on the image that is to be drawn. After a complete
line of epps is received, the plotter controls the writing head to charge the paper at epps whose
values are “on.” As the paper advances, new lines are charged and the charged lines reach the toner
applicator where the ink is applied. The process continues down the entire page.

The density of epps, or resolution, is critical to the quality of the image. Typical
electrostatic plotters have resolutions of 100 to 250 epps per inch. One hardware modification to
increase resolution is to arrange the writing head in two rows of epps, one for even epps and another
for odd. A single line of epps is printed on the paper in two steps that are synchronized in time so

that the even and odd epps align along a line.
IAAVWAVWAWA WA WA WA
At
NN A A\

13333333 31318D

Figure 2-8. Staggered Epp Writing Head Operation.

Some past and present electrostatic plotter manufacturers are Versatec, Houston
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Instruments, Varian, and Gould. Prices range from $5,000 to $50,000, widths vary from 8 inches
to 6 feet, speeds vary between 1 to over 6 inch/sec., and resolutions vary from 80 to 250 epps per
inch. Color printing can be done with multiple passes over the same paper, once for each color
component. This will be described later in the chapter on color.

Electrostatic printers have been replaced by the more popular laser printers.

2.3 Laser Printers

Laser printers operate like electrostatic printers, except the printing “engine” is a laser
beam instead of a writing head. The computer sends digital information (commands) to the
controller, which carefully controls the intensity and deflection of the laser beam through a rotating
polygon mirror. The mirror deflects the beam to the proper location (dot) on the photoreceptor
drum. One line of dots along the drum is written at a time. The drum rotates, imparting the charge
onto the paper passing under (over) it. The toner then adheres to the charged locations on the paper.
Laser printers are capable of much higher resolutions than electrostatic plotters, from 300 to

thousands of dots per inch (dpi).

Polygon mirror

|
Solid-state
Computer || Controller —{) diode laser )—»D:EL—_ED:I

Laser
Beam

Photoreceptor
drum

Toner cartridge Fuser

Paper \

Figure 2-9. Elements of Laser Printers.

Some laser printer engine manufacturers are Canon, Ricoh, Kyocera, and Linotype. Prices

range from $1,000 to over $50,000 and speeds vary from a few to 20 or more pages per minute.
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2.4 Film Recorders

These devices write on film. Some act as a stand-alone output device. The image is drawn

by drawing three monochrome (one color) images, each through the appropriate filter.

Cathode Color Wheel Camera
Ray Tube m Green
' Color-filtered
video Red .
computer /\ ° g

output < recorded
\] wlue on film

Figure 2-10. Elements of a Film Recorder.

Another variety of film recorder is used in conjunction with a raster display. The process is
similar to the film recorder above, however the image is not computed for the recorder, but is

instead captured from a screen display.

Color Wheel C2mera

: B/W m Color-filtered image
Switch '
* CRT ' I ’ recorded on film.

Color
Display

CRT

W |~

Figure 2-11. Elements of a CRT Film Hardcopy Recorder.
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Chapter 3. Static Graphics Software

3.1 Hardcopy Plotting

We will begin by looking first at “generic hardcopy plotting.” Early computer systems used
batch computing, where each job ran without interaction, producing listing output and storing files
for later examination. Plotting was done the same way. A program produced a “plot data file”” and
then directed the system to create the plot from this file. One can think of today’s laser printing as
the same process.

One of the first plotting packages, a library of functions that can be used to create plot data,
was the Calcomp package developed in the 1960’s (and versions are still in use today). Although
many graphics packages have been developed over the years for increasingly more powerful
graphics systems, all contain fundamental elements that are illustrated in the Calcomp package:
initialization, drawing lines and symbols, and termination.

A typical Fortran program that calls Calcomp routines appears as shown below.

call plots

. other plotting calls
call plot( 0.0, 0.0, 999 ) 2
stop X Feag -
end

The routine plots initializes the plotting package internal variables and must be called
before any other plotting routines. The routine plot with the given arguments terminates the
plotting and must be the last routine called. In an off-line or spooled plotter configuration, plots
initializes the intermediate plot data file. In an on-line plotter configuration, plots may setup the
plotter interface and move the pen to the corner of the paper, or it may do nothing at all.

There are two basic drawing routines, one for lines and one for symbols (characters).

plot( x, y, ipen )

Plot moves the pen to the location (x, y) inches with respect to the origin, originally the
lower left of the plotting page. If the value of the pen code ipen is 2, a line is drawn. If the value
of ipen is 3, the pen is just moved, no line is drawn. Additionally, a negative pen code (-2 or -3)

translates the origin to the destination coordinates. Changing the plotting origin is convenient, for
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example, when making several side by side pages of graphs (in the x direction). After completing
the first page, the statement “call plot( 11.0, 0.0, -3 )” positions the pen and the origin
11 inches to the right of the current origin, a convenient location for the next page. In general,

changing the origin facilitates drawing objects whose coordinates are not conveniently expressed
with respect to the lower left corner of the page. We will use the symbols DRAW for a pen code of

2, MOVE for 3, and ENDPLOT for a pen code of 999.

symbol( x, y, height, string, angle, ns )

Symbol draws a string of characters, a series of characters along a line. The coordinates of
the lower-left corner of the first character in string will be (x, y). The string’s height in inches
will be height. string is a character string, either a “quoted list of characters,” a character
Védable, or a character array. The string will be plotted at angle degrees measured
counterclockwise from the East direction. The argument ns specifies the number of characters
plotted from string.

In Figure 3-1, the program creates the plot shown at the right.

[0,11ﬁY 8.5,11]
plots();
plot( 0.0, 0.0, 3 ); oTEST
plot( 8.5, 0.0, 2 ); (1,9)
plot( 8.5, 11.0, 2 );
plot( 0.0, 11.0, 2 );
plot( 0.0, 0.0, 2 );
symbol(1.,9.,1.5,'TEST',0.,4);
plot( 0.0, 0.0, 999 );
X
10707 85,01

Figure 3-1. Sample Calcomp Program and Plot.
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3.2 Lines

The Calcomp plotting package is an example of a basic set of static graphics routines. We
are most concerned with general organization and function, not with specific names, argument
lists, or other such details. We now take an inside look at the most basic of graphic functions,
drawing straight lines.

A plotter can only draw straight lines corresponding to steps. Step sizes are small (typically
0.002 inch) so that fine detail can be drawn. The problem is drawing an arbitrary length straight
line from a fixed set of small steps. Figure 3-2 shows a greatly magnified view from above the

current pen location (black dot):

_X,+y (\

X O tX

-X,-y A ! o) +X,-y

Step Size
Figure 3-2. Possible Pen Steps.

There are 8 possible steps corresponding to horizdntal, vertical and diagonal pen motions.
Support software in the plotting package, in plot, must create each line as a sequence of these
steps. This is accomplished by a stepping algorithm, the most famous of which is the Bresenham
algorithm [Bresenham]. Of particular note with this algorithm is that it requires only addition and
subtraction of integers, so it can be implemented in inexpensive miCroprocessors.

The first plotters accepted only simple binary commands that specified step directions and
pen control, so line generation had to be done by the host computer software. Now, most plotters
do this internally, so that only end point coordinates of the line need to be sent by the host

computer.
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3.2.1 The Bresenham Line Stepping Algorithm

Consider the situation shown in Figure 3-3, where the pen is at location [0,0] and a line is

to be drawn whose exact equation is: u y = v X. Note that any line that does not pass through the

Exactline:uy=vx

Y
A

jn+1

[0,0] - | n n+l

Figure 3-3. Stepping AIQ’orith\m Variables.

origin can transformed into such a line using a simple change of variables.

Assume that the pen has been moved (stepped) to the position labelled “P.” There are two
possible next steps: a “major” diagonal step to point A and a “minor” horizontal step to point B.
The term major indicates that the step involves both X and Y, whereas a minor step involves only

one direction. The exact coordinates of the point on the line at x = n+1 is point E, whose y value is
v . . . . . ,
(n+ l)ﬁ . To decide which step, minor or major, would be closer to the exact line, first compute
two positive vertical distances, AE and EB:

AB=(jp+1)-(n+1) 3

EB=(n+1):-;-jn

Let the quantity d,, ; be the scaled difference of these two distances (assuming u > 0):
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dy1 =u {EB-AE}
: Vo . v
=u{[@+DI -j 1-[Ga+1)-(n+1) = 1)
=2v(n+1)-u(2j,+1).

For the previous step (substituting n-1 for n):

d, =2nv -u(2j,1+1).

Now express d,,, in terms of d,, to formulate the incremental “stepping algorithm:”

Ay = dy +2V =20 (p-jpr)
and d;=2v-u (whenn=j,;=0).
Note that (j,-jy.;) =0ifd; <0, which means take a minor step (e i<
and d, ; =d,+2v,
=1 if d,, > 0, which means take major step

andd,,; =d,+2v-2u

For lines in the other four quadrants (and when Ay > Ax), it is necessary to define the proper

minor and major steps according to the particular plotter and its commands, and the proper u and

v quantities using absolute values. For example, given a line with a negative Ax and positive Ay,

i.e. with the end point in the second quadrant, the minor step would be “-x” and the major step

would be “-x+y.” The quantities u and v must be computed as their first octant values.

This algorithm is illustrated in Figure 3-4.

major = ‘proper plotter command for diagonal step’;
minor = ‘proper plotter command for minor step’;

u = max( abs(dx), abs(dy) );

v = min( abs(dx), abs(dy) ):;

d = 2v - u;
for( counter = 0; counter < u; counter++ ) {
if(d>= 0) {
d=d+ 2v - 2u; /* or d += 2v - 2u; */
PlotterCommand (major) ;
} else {
d =d+ 2v; /* or d += 2v; */

PlotterCommand (minor) ;

Figure 3-4. Stepping Algorithm Logic.
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Note that the quantities 2v - 2u and 2v are constants, and 2v = v+v. Figure 3-5 is an example

of the execution of the algorithm.

DX =5, DY =4, therefore: u=15, v =4, major = “+x+y”, minor = “+x”

ideal line N

n dy dp1 step 4
1 3 1 major \

3 /
2 1 1 major N
3 -1 7 minor 2

actual steps

4 7 5 major /

1
5 5 3 major ¢

0

0 1 2 3 4 5

Figure 3-5. Example Steps. |

Figure 3-6 illustrates an implementation of the stepping algorithm for a plotter whose step
command is an integer in which each bit has the meaning shown in the figure. P1ot terCommand
is an operating system interface routine that sends the given integer, assumed to be a plotter

command, to the plotter.

3.2.2 Plotting Lines

As examples of the internal operation of a plotting package, examine how the two basic
drawing routines could be coded. To begin, it seems logical that a “user” would not want to use
coordinates in units of plotter steps. This would be very inconvenient and makes the program
specific to a particular plotter. Also, the user may want to easily change the plot scale (for example:
to reduce the picture size for publication) and origin (for example: to produce a series of side by
side graphs).

Assuming the existence of the stepping routine, Step, subroutine P1ot could be written
as shown in Figure 3-7. The variables xpen, ypen, xorg, yorg, factor, xres,
yres are global variables maintained by the plotting package. Xpen and ypen are the current

pen location of the plotter. Xorgandyorg store the origin and factor is the scale factor. Xres
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void Step( int dx, int dy )
{

int major, minor, u, v, d, count;

plotter command:

u = dx;
iE(u<0) | 32 16 8 4 2 1
u = -u; // abs (dx)
major = 4; // -x PEN| PEN _ _
} else DN UP +X X +Y Y
major = 8; /] +x ‘ ‘
v = dy; example: 001001, =9, = step +X -Y
if(v<0) { N ] Cah = ;
v = -Vv; // abs(dy)
major |= 1; // OR -y bit
} else
major |= 2; // OR +y bit
if(u>=v) { // major direction is x
minor = major & 12; // save only x bits
} else { // else major direction is y
minor = major & 3; // save only y bits
d = u; // and swap u & Vv
u = v;
v = d;
}
count = u;
v o+= Vv; // 2v for minor d increment
d =v - u; // initial 4 is 2v - u
u=da- u; // 2v - 2u for major d increment
while( --count >= 0 ) {
if(d >= 0 ) {
d += u;
PlotterCommand( major );
} else {
d += v;

PlotterCommand( minor );

Figure 3-6. An Implementation of the Stepping Algorithm.

and yres are the resolutions, which can be varied by the package as different plotters are selected

for use. The routines EndPlot, PenUp and PenDown are system “interface” routines that

communicate with the plotter (on-line) or enter plotter control commands to a plot file (off-line).

3.3 Characters

To draw a character requires that its graphic appearance, or glyph, is pre-defined in some

drawable form. It is necessary to create a general definition of each character that can be scaled and

positioned as needed. We establish a definition grid, a layout convention for defining characters.
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float xpen, ypen, xorg, yorg, factor, xres, yres;

int Round( float x )
{
if(x < 0)
return (int)(x - 0.5);
return (int)(x + 0.5);
}
void Plot( float x, float y, int pen )
{
int dx, dy, penabs;
float xold, yold;

if( pen == ENDPLOT ) {

Endplot () ;
return;
}
xold = xpen;
yold = ypen;
xpen = x * factor + xorg;
ypen = y * factor + yorg;

penabs = pen;

if( pen < 0 ) {
penabs = -pen;
Xorg = Xpen;
yorg = ypen;

}

if( penabs == MOVE )

Penup() ;
if ( penabs == DRAW )

Pendown () ;
dx = Round( xres * (xpen - xold) );
dy = Round( yres * (ypen - yold) );

Step(dx, dy);
Figure 3-7. An Implementation of Plot.

A complete set of character definitions is called a font.

Look at an example, assuming a 7 by 7 definition grid to define a capital 'A' as shown in
Figure 3-8. The routine to plot the symbol ‘A’ is coded in Figure 3-9. The variable ‘f ‘ is a scale
factor that scales grid-units to inches.

This character is defined as strokes (lines). Other character definition formats exist, such as
outline fonts, where each character is defined as a series of lines and curves that form a closed

o

boundary.

By convention, characters are represented in computers as an ordered set of integers that
correspond to graphic symbols. The standard in use today is the American Standard Code for
Information Interchange, ASCII. All characters are represented in 7 bits in an 8-bit byte with values

from O to 127. Only 96 of these are graphic (letters, numbers, punctuation), the others are non-
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baseline for
previous line. <

Data for “A”

/ \ 1 0 0 3
4 2 | 2 | 6 2
3 3 | 4 | o 2
5 4 | 1 | 3 3

/ \ 5 | 3 | 3 2
1

of %
Recall:

/ 0 1 2 3 4 5 6\7 h “baseline” 2 is DRAW,
characters start at [0,0] (lower-left). 3is MOVE

next character begins here.

Figure 3-8. Definition of Character “A.”

void A( float x, float y, float ht )

{
static int ax[5] = {0, 2, 4, 1, 3};
static int ay([5] = {0, 6, 0, 3, 3};
static int pen[5] = {3, 2, 2, 2, 2};
-2 float £ = ht / 7;
int i;
for( i = 0; i < 5; ++1i ) _
Plot( x + £ * ax[i], v + £ * ayl[i], pen[i] );
}

Figure 3-9. Routine to Draw the Character “A”.

graphic, e.g. carriage return, beep, delete. For example,

‘A’ = 101 octal = 65 decimal

a' = 141 octal = 97 decimal

The first approach to coding the full Symbol routine might be to create 96 individual
routines, one per graphic character, and use a list of IF statements to decide which routine to call.
This also illustrates the issue of character spacing (Figure 3-10).

The variable dx is the accumulated horizontal distance from the initial x location to the next
character to be drawn. In this case, it is computed using a convention that the spacing between

characters shall be 6/7 of their height (a convention in the Calcomp package). This is fixed width
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void Symbol( float x, float y, float ht, char *string, int ns)

{
float dx = 0.0;

int i;
for( i = 0; i < ns; ++i ) {
if( stringl[i] == ‘A’ )
A( x+dx, y, ht );
else if( string[i] == ‘B’ )
<etc.>

dx += ht * 6.0 / 7.0;

Figure 3-10. 1F Statement Version of Symbol.

spacing. Another approach is variable width spacing, or proportional spacing, where the distance
between characters depends on each individual character. In this example, this could be done by
adding to each character definition a point with coordinates “w 0 3” , where w is the horizontal
distance, in definition grid units, to the start of the next character and would vary for each character.

Thus, the letter “i” could move a smaller distance, i.e. be thinner, than the letter “m.”

3.3.1 _Font Data Structures

As can be readily seen, there must be a better way to create a routine to draw any character
string than the list of IF statements previously shown. A data structure is needed to represent a
whole character set, i.e. a font:

There are (at least) three data structures that can be used to store the font, varying in the
constraints they impose on the order that the character definitions occur in the data arrays and the
size of each character, that is the number of points per character. Figure 3-11 illustrates the

elements of the structures described below.

1. ASCII order, fixed size. O o— 277

The character definitions in the data arrays must appear in increasing numerical order
according to the ASCII codes. Also, the definitions must contain the same number of points, which
we will assume is given in a predefined constant, CHARLEN. Therefore, the dimensions of xgrid,
ygridand pen are 128*CHARLEN (assuming 128 characters, with ASCII codes 0 to 127, will be
stored). The data for a given character can be found using only the ASCII code. The index of the

start of the definition for the character with ASCII code “ascii” is computed as CHARLEN * (asciiq;;E
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Character Table: Data Arrays:
cart () a0 xgrid() ygrid() pen()
star en
-
NN\

\

N\ | e
\

N& \&

IAI .

P

~
N

AN
S

N

N\
\

\

max. #char

max. #points —p
for ALL char’s.

Figure 3-11. A Font Data Structure.

—/],f), and the definition has CHARLEN points.

2. ASCII order, variable size.

The definitions appear in increasing ASCII order, but the sizes of the definitions are
allowed to vary. The is an improvement over the fixed size approach because now each character
can be designed without concern for exceeding the size limit or wasting valuable data space.
However, the starting index in the data arrays can no longer be computed from the ASCII code
alone. Another data array must be created to store the starting indices in the data arrays: the start
table. This table is indexed by the ASCII code. Due to the fact that the definitions are in ASCII
order, the end of one definition can be computed from the start of the definition for the character

with the next ASCII code.

3. Unordered, variable size. Requiring ASCII order can be overly constraining. The data can

be more easily created and edited, for example, if definitions are allowed to appear in any order.
The definitions are no longer in ASCII order, so the end of a definition can no longer be computed
as above. This makes it necessary to extend the table with another data array to store the end index
of each definition, the end array. (Some may find it more convenient to store the size of each

character.) The arrays start and end are indexed by the ASCII code.
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Figure 3-12 shows how routine Symbol could be coded using these data structures.

void Symbol( float x, float y, float ht, char *string, int ns )
{
float £, dx;
int ascii, i1, i2, i, 3J;
static int xgrid[?]={...}, ygrid[?]={...}, pen=[?]{...};
static int start[?]={...}, end[?]={...};
f =ht / 7.0;
dx = 0.0;
for( i = 0; i < ns; ++i ) {
ascii = stringl[i];
/* option 1: ascii order, fixed size */
i1 = CHARLEN*(ascii)—1)+1;
i2 = il + CHARLEN - 1;
/* option 2: asci order, variable size */
il = start(ascii);
i2 start(ascii+l)-1;
/* option 3: unordered, variable size */
il = start(ascii);
i2 = end(ascii);
for( j = il; j <= 12; ++3j )
plot( x+dx + f*xgrid[j], y+f*ygrid[jl, pen[j] );
dx =dx + ((ht * 6.0 / 7.0 );

Figure 3-12. symbol Using A Font Data Structure.
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3.4 Window to Viewport Mapping

We now extend the low-level graphics capabilities by developing some fundamental
mathematical elements for 2D graphics. To begin, consider the task of drawing data read from a
file into a known plotting area. The problem is that the programAdoes not know the data coordinates
until the data is read. The user, i.e. the creator of the data, could be forced to manipulate (transform)
the data to fit in the plotting area, but this is generally unacceptable and far too device specific.
There is a better, more general approach, based on the graphical process known as window to
viewport mapping.

First, establish some terms:

data window: a rectangle defined in data units, or world coordinates.

viewport: a rectangle defined in device units, or device coordinates.
/—- data window y viewport
\"
™[O
/ ' : - Xy
Xw

Figure 3-13. Data Window and Viewport.

3.4.1 Mapping Equations

The problem is to map, or transform, world coordinates into device coordinates so they can
be drawn on the device. The variables that represent the location and dimensions of each space are
shown in Figure 3-14. Think of mapping the window boundary to the viewport boundary. The
derivation of the mapping from coordinates in window units, [Xy,,yy], to the corresponding
coordinates in viewport units, [X,,y,], using the window and viewport parameters involves three
steps:

1. Translate to data window coordinates relative to [wcx, wey ]:

X1 = Xy - WCX
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Yw data window viewport
A Yv
Xy>Yw)  WSX
: Xv
- 1WSY ( >
JF==_l¥ - (XysYy) VSX
(wex,wcey) T~ «—
=
+ v ‘Ivsy
+ —
- XW (vex,vey)

Figure 3-14. Data Window and Viewport Variables.

Y1 = Yw - WCYy
2. Scale from window to viewport coordinates relative to [ vcx, vey ]:
Xy =X AL
WSX
Y2=)1 ;%};,
3. Translate to viewport coordinates relative to the viewport origin:

Xy = Xy + VCX

Yy =Yya +VvCy

Combine these into single equations:
Xy = (X - WCX) VX vex
VoW WSX

= (Y - wey) Y
Yv= Q- wey) I+ vey

As a check, examine the units of the last equation for x, and y,:

. . . . deviceunits . .
(device units) = (data units - data units) (devic ) + (device units)

(dataunits)
As expected, we get (device units) = (device units).

As a further validation, select a test point, the upper right corner of the data window, and
map it to viewport coordinates. The coordinates of the upper right corner are: [wcx+wsx,

wcy+wsy]. Substituting these for x, and y,, into the equations above,
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VSX
Xy = (WCX+WSX - WCX) wex TVCX  =vsx+vex

vsy

Yy = (Wey+wsy - wcy) wsy

+vcy =vsy+vcy

These are the expected values.

3.4.2 Uniform Scaling

VsSX Vs . . . .
If the two scale factors p— and w_s}}ll are not equal, i.e. the aspect ratios (width/height) of
the window and viewport are not equal, the data is unequally scaled in x and y, causing distortion.

window viewport

— [ _

Figure 3-15. Distortion Due to Unequal Scaling in X and Y.

This can be avoided by altering the mapping process to perform uniform scaling. This

. . . VSX VS ) .
involves using a single scale factor, factor = MIN(E ’w—s};/ ) , in place of two separate factors in

the second step. In this case, the window boundary will map on or inside the viewport boundary.
In many applications, the data window is computed from the given data to be the smallest

enclosing rectangle, often called the ?;xtentiy The extent is computed by scanning the data

coordinates to find the extrema for x and y, which are the coordinates of the diagonals of the

bounding rectangle: [xmin, ymin] and [xmax, ymax]. From these coordinates, the appropriate data

Chapter 3. Static Graphics Software



3.5 2D Transformations 27

window variables are easily found.

A extent rectangle

[xmax,ymax]

“data",
\/ g

[xmin,ymin]

Figure 3-16. Data Extent.

3.5 2D Transformations

Window to viewport mapping involved coordinate transformations. In general, a

transformation is a mapping;:

1. of one set of points into another in a fixed reference frame, (Figure 3-17)
Y Y X"y
[x,y]
—_—
X X

Figure 3-17. Coordinate Transformation.

2. or from one coordinate system to another (Figure 3-18). This is termed
Y
[xl,yﬂ
Y, [X2,¥2]
Xy
X5

Figure 3-18. Change of Basis Transformation.
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change of basis. For now, focus on the coordinate transformations, the mapping of a set of points

(data) into another.

3.5.1 Review of Matrix Representation

Algebraic representations for transformations, i.e. variable substitutions in equations, limit

computer implementations in several ways:

1. a special procedure is needed for each basic transformation.

2. it is difficult (sometimes impossible) to provide general trunstormation capabilities
in algebraic form in the computer,

3. it is not generally possible to find the inverse of the algebraic equations resulting
from a series of transformations. (For example, this is needed to restore the original
position of an object after several transformations.)

We can represent the equations in a more general and computationally convenient way

using matrices. In general, two equations of the form
x"=ax+by
y=dx+ey

are expressed in the matrix equation:
e ad
o] = Bt

when the coordinates x and y are represented as row vectors. When the coordinates are represented

as column vectors, the matrix equation appears as,

FRE

Define symbols for the vectors and matrix:

vi=ley] V= [xy M={2d}

(<

Using row vectors, the symbolic equation is : V"=V M, and using column vectors, it is

V" =MT V, where M is the matrix transpose of M. Given the symbolic equation, it is generally
apparent whether row or column vectors are in use. However, given only a matrix, it is necessary

to know if this matrix is to be applied to row vectors (vector before matrix) or column vectors
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(vector after matrix). These notes will use row vectors for coordinates.
For 2D operations, we are tempted to make M 2 by 2, but this disallows constants because
all M elements multiply x or y. Expand the representations of M and V.
ad
V= I:x y 1] M= pe
cf
This will work, but looking ahead we see that having M 3 by 2 will cause problems because we

cannot invert a 3 by 2 matrix and we cannot multiply a 3 by 2 by a 3 by 2. For these reasons, we

add a third column to M:
ado 100
M= peo and I=1010
cfl 001

3.5.2 Basic Transformations

There are three “basic” transformations that can be combined to form more complex

transformations: translation, scaling, and rotation.

1. Translation:
Y Y o
x%y’]
]’ [X,y] ey
X X
Figure 3-19. Translation.
X =x+Tx
y'=y+Ty
The translation transformation in functional form and matrix form:
1 00
T(Tx,Ty) = {0 1 0
Tx Ty 1
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2. Scaling:
Y Y,
]’ [x.y]
> ]’ [x%y’]
X X
Figure 3-20. Scaling.
x =S8Sxx
y =Syy
The scaling transformation in functional form and matrix form:
Sx 0 0
S(Sx,Sy) = |0 Sy o0
0 01

Note that position is affected by scaling. The above equations scale “about the origin.”
Mirror images can be done (for some geomtric forms) using negative scale factors. Distortion, or
scaling with different factors in x and y, can be avoided simply by using a single scale factor Sx =
Sy =‘S’.

3. Rotation:

Figure 3-21. Rotation.

Given [x,y] and ., rotate by the angle 0.
x"=Rcos(a+0)

y'=Rsin(a+0)
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Expanding,
x"=R (cos acos 0 - sin o sin 0 )
y =R (sin ocos B+ cos asin 0)
and then recognizing that x =R cos o and y = sinQ,
x"=xcos0- ysin0
y =X sin 0 +ycos 0
The rotation transformation in functional form and matrix form:

cosO sin6 0
R(0) = |_sin® cos 0
0 0 1

Like scaling, the rotation transformation is about the origin (Figure 3-22).

Y .
x’,y’]

j’y] ___>
| X X

Figure 3-22. Rotation Occurs About the Origin.

For simplicity in writing and reading matrix equations, we generally write matrix
transformations using the functional forms, which were shown above:

“T'(Tx,Ty)” for translation,

“S(Sx,Sy)”  for scaling,

“R(0)” for rotation,

The”identity transformationsi ior null transformations, are those that produce the identity

matrix: T(0,0 ), S(1,1), R(0).

3.5.3 Concatenation (Composition)

A series of transformations can be combined (concatenated) into one. For example,
consider scaling an object about a given point. We want to reduce the size of the box without
changing its position [a,b] (Figure 3-23).

First carry out the derivation algebraically:

Chapter 3. Static Graphics Software



3.5 2D Transformations 32

a,b-
X

Figure 3-23. Scaling About a Point.

1. Translate so that position [a,b] becomes the temporary origin. [a,b] could be any

reference point:

Xp=X-2a y1=y-b

2. Scale to the correct size:
Xy = SX X y2=S8y yi

3. Translate again to restore the position [a,b]:
X, =X +a y3=y2+b

Notice that X, is a function of X, and Y, is a function of X, Substituting:
x3=(x-a)Sx+a y3=(y-b)Sy+b
The order is very important.
Any number of basic transformations can be concatenated into one pair of equations,
eliminating the intermediate results that would have required extra data storage and computation.
Concatenation is easy in matrix form. For the scaling example:
1. translate: T(-a,-b)
2. scale: S(Sx,Sy)
3. translate: T(a,b)
Combining these into a matrix equation:
V3 =v, T(a,b)
=[ v; S(Sx,Sy) ] T(a,b)
=[ v T(-a,-b) ] S(Sx,Sy) T(a,b)
This last equation is easily converted to matrix form by substituting the appropriate matrices. We
can define the composite transformation matrix, M as:
M = T(-a,-b) S(Sx,Sy) T(a,b)

and therefore,
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V3=V M.
Note again that the order of the matrices is critical! For practice, find M using the symbolic

matrices:

1 0 o|[sx 0 o|[100
M=10 10/{0Syo|l010
—a-b1/[0 0 1lab1
sx 0 ol[too0
=1 0o sy ollo1o
|—aSx -bSy 1j|a b 1

Sx 0 0
0 Sy 0
(—aSx+a) (-bSy+b) 1

Multiplying out the matrix equation symbolically yields the two expected algebraic
equations:
X'=xSx+(-aSx+a) = (x-a)Sx+a
y=ySy+(-bSy+b) = (y-b)Sy+b

Thus, a single 3 by 3 matrix can represent any combination of basic 2D transformations in
a compact, codable and simple form. In the computer, these are all numbers.

Functional form provides a convenient way of understanding and even solving
transformation equations without doing matrix multiplication. For example, given the
transformation equation in functional form, one can visualize the resulting picture by performing
each basic transformation “by hand” on the objects. Try this with the previous “scaling about a
point” example. This is easier (and much faster on a test) than performing the arithmetic.

Suppose we wanted to find the inverse of a series of transformations. Instead of computing
the inverse of the concatenated 3 by 3 matrix, utilize the fact that the inverse of a product of
matrices (transformations) is the product of the inverses in reverse order. The inverses of the basic

transformations can be computed by inspection:

T(a,b)! = T(-a,-b), S(a,b)"! = S(1/a,1/b), and R(6)! = R(-0).
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3.6 Two-Dimensional Clipping

Window to viewport mapping transforms coordinates from one coordinate system to
another. Coordinates outside the window map to coordinates outside the viewport. It is often
desirable or necessary to remove or “clip” portions of the data that lie outside a given boundary.

At first glance, one might be tempted td write a routine with a sequence of IF tests, each
dealing with a special case. Fortunately, there is a more organized approach. An elegant algorithm,
known as the Cohen - Sutherland clipping algorithm, was developed for line clipping. The
algorithm is based on a special integer code, called a region code or end point code, that is
computed for each end point of a line. This code compactly designates the boundary of the 2D
region or zone in which the point lies, and has been designed for ease of use and efficiency in
héndling special cases.

Two-dimensional space is divided by four boundaries into 9 regions, all of which are semi-
infinite (extend in one direction to infinity) except one, which is designated the “visible” region.
Each boundary is assigned a bit code, or power of two integer, uniquely designating the violated
boundary. The visible region is the center region and has a code of 0. One possible coding scheme

is shown below:

TOP BOTTOM RIGHT LEFT IN

1000, (819) | 0100, (410) | 0010, (2;0) | 0001, (1;0) 0

The region codes are computed based on these conditions as shown in Figure 3-24.

Code to compute the clipping region code is illustrated in Figure 3-25. Note that points on the
boundary of the visible region, as well as those inside, have a region code of IN.

Instead of attempting to detect and process the many possible cases of lines with end points
in different regions, the algorithm uses the region codes to determine if the line is entirely visible
or entirely invisible. If not, then one of the end points that is outside any boundary is re-computed
to be the intersection of the line and the boundary, sometimes called “pushing” the end point to the
boundary. This “clipped” line is then subjected to the same process. This “test and clip” iteration
continues until the re-computed line is entirely visible or invisible.

The region codes greatly simplify and speed the visibility tests on a line. A line is visible

Chapter 3. Static Graphics Software



3.6 Two-Dimensional Clipping 35

A A
1001, 1000, | 1010,
< » ymax
0001, 0000, | 0010,
visible /\/r > ymin
region y
0101, 0100, | 0110, |
/ v 4 )
Xmin Xmax

Figure 3-24. Clipping Region Codes.

code = IN;
if( x < xmin ) code = LEFT;
else if( x > xmax ) code = RIGHT;
if( y < ymin ) code = code + BOTTOM;
else if( y > ymax ) code = code + TOP;
Figure 3-25. Clipping Region Computations.

when both end point codes are zero, a simple and fast computation. The value of the region bit-
coding scheme is seen in the test for an entirely invisible line. Without the region codes, one could
code this test as an unwieldy statement of the form “if both end points are above the top boundary
of the visible region, or if both end points are below the bottom boundary of the visible region, if
both end points are left of the left boundary of the visible region, or if both end points are right of
the right boundary of the visible region,” then the line is entirely invisible. With the region codes,
however, this test is simple. Notice that the condition of both end points violating a boundary, i.e.
above the top, below the bottom, right of right, left of left, means that the region codes will have
1’s in corresponding bit positions. This means that the integer “and” of the two region codes will
be non-zero. In Fortran, the "and" computation is an implicit integer function,
result = and( il, i2 ) orfor some compilers: result = il .and. i2

and the ‘&’ operator in C, /10D o
o oth g e

s IV RRY
} /0

result = il & i2. : -
The invisibility test reduces to a simple computation and test against zero. In effect, the “and”

operation is four parallel IF statements.
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Computing the clipped end point when a line crosses a clipping boundary is a geometric
computation that is best done using the symmetric equation of a line. Given a line with end points

[x1,y1] and [x5,,y,], any point [Xx,y] along that line satisfies the following equation,

X=X Y-y
Xy=X; Yo=Yy

For a given boundary, either x (x = xmin for the LEFT boundary and x = xmax for the
RIGHT) or y (y = ymax for TOP and y = ymin for BOTTOM) will be known, so the equation can
be solved for the other coordinate. There are four boundaries, so there will be four pairs of
equations. For example, if end point 1 of line crosses the RIGHT boundary, then end point 1 would

be re-computed (clipped) as follows,

Yo=Yy

Yy = T x (xmax —x,) +y,
2 1

X; = Xmax

Note that the order is critical. The y; computation must use the original x; coordinate.
Although the algorithm appears at first to clip unnecessarily many times, for example, a
line may be clipped several times before being found to be outside the visible region, in fact it is

efficient and very compact. Figure 3-26 illustrates how a line is processed during the iterations of

the algorithm.
Pass EndPoints  Action
P1,
Step 1 0  Ply-R2o Original Line
\ 1 P12 1y was LEFT
\ 2 f12 -PQQ 21 was RIGHT
PLL2,825 7 3 P12, 1, was BELOW

15 The resulting line 1525 is visible.

Step & 1;

Step 2

20 P21

Figure 3-26. lllustration of the lterations of the Clipping Algorithm.
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An implementation of the algorithm is shown in Figure 3-27.

void ClipLine2D( float x1, float yl, float x2,
{
int cl, c2, ctemp;
float ftemp;
c2 = RegionCode( x2, v2 );
for(;;)({
cl = RegionCode( x1, vyv1 );
if( ¢l == IN && c2 == IN ) {
/* process visible line from [x1,yl] to [x2,y2] */
return;
}
if( (cl & c2) =0 ) {
/* the line is
return;
}
if( cl == 1IN ) { /*

ctemp = cl; cl
ftemp = x1; x1
ftemp = y1; vl

}

if( ¢l & LEFT ) {

vl +
x1l =
} else if(
vl +
x1l =
} else if(
x1 +
yl =
} else {
x1
vl

+

= (y2 -yl
xmin;

cl & RIGHT
= (y2 -yl
Xmax;

cl & TOP )
= ( x2 - x1
ymax;

/* BOTTOM
= ( x2 - x1
ymin;

invisible - skip or notify caller*/

float y2 )

swap points 1 and 2 to simplify cases */

c2;c2
xX2;X%X2
v2;y2

x2

v2

y2

ctemp;
ftemp;
ftemp;

- vyl )

xmin

xXxmax

ymax

ymin

Figure 3-27. Implementation of the Clipping Algorithm.

3.7 Rasterization

The electrostatic plotter and laser printer are called raster devices because images are

x1

x1

vl

vl

)

produced by dots displayed in a strict order. A plotter is a random vector device because lines can

be drawn by continuous strokes in any direction in any order.

To display lines on a raster device, lines must be converted into raster units, e.g. epps or
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dots. This process is called rasterization.

Consider the process of computing the raster units on a page that will be printed using an
electrostatic plotter or laster printer. Imagine superimposing on the page a grid of all possible raster
units at their respective raster locations. Place over the grid a 2D coordinate system where the
centers of raster units are whole numbers. During window to viewport mapping, the end point
coordinates of a line are carefully rounded to the nearest raster location. The grid can be
represented as a two dimensional array of raster values that is indexed by the row number, i.e.
number of units vertically from the bottom (or top) of the page, and the column number, i.e. the
number of units horizontally from the left of the page. Thus, the rounded [X,y] coordinates can be
used as array indices. This suggests that a computer implementation of rasterization involves a two
dimensional array of integers representing all the values at raster locations.

As shown in Figure 3-28, the problem of rasterizing a line given the starting and ending

y ‘ raster exact coordinate:
location (5,8) \ (5.3, 8.4) before rounding.

8
7 \
6 | \ , exact line

5 AV
raster

4 / location (8,4)
exact coordinate:

30 | (7.7, 3.6) before
rounding.

20 1

1

0 » X

0 1 2 3 4 5 6 7 8
Figure 3-28. Raster Grid and a Line.

grid locations appears very similar to the plotter stepping problem. In fact, the stepping algorithm

can be used almost directly, provided we give a different interpretation to a “step.” In the case of
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a plotter, a step was the motion of the stepping motors controlling the pen motion. A plotter step
draws a small straight line that was horizontal, vertical, or diagonal.

For a raster device, however, a step must be interpreted in terms of raster locations on a
grid. Instead of moving the pen, a step means to advance incrementally to the next raster location.
The stepping code is easily modified to do this. The Plot terCommand calls should be replaced
by statements that increment the [X,y] coordinates of the raster location and set the value in the
array to “on” (typically the number 1 or 0).

Rasterization creates some special problems in computer storage. Suppose we try a “brute
force” method, creating an array to represent all raster locations on a printer page and then
computing the entire raster array before printing it. This approach is called a Page System. A plot
on an 11" high page, one inch wide, at 200 raster units/inch contains: 200 x 200 x 11 = 440,000
values. If we store all information in memory,we would need almost 500,000 words of memory.

If we “pack” the data so that the “on/off” information for N raster units are stored in bits in
a single word (16, 32 or more bits/word are typical), we still need around 7,333 to 13,750 words,
just for that one inch.

Using a page system approach is not practical in some cases when the computer system
lacks sufficient memory. Another approach is to make sequential passes over the data, rasterizing
only one small strip at a time, called Strip-Page Plotting. For each strip, which amounts to a
rectangular region of the plotting page (like a viewport), convert all linework (and symbols) into
raster data, send this strip of data to the plotter, move the strip, then repeaf the process until we have

passed over all the data (Figure 3-29).
Y\

Paper Travel
through plotter

Y

]
1
1 L L)
1 1 1

Figure 3-29. Strip-Page Plotting.
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Review Questions

Derive the window to viewport mapping for viewports defined on devices that have the
origin at the upper left of the screen, with the horizontal coordinate “h™ increasing right,
and the vertical coordinate “v” increasing down.

Derive a two-step window to viewport mapping procedure which first maps world data in
the window into a unit viewport with center [0,0] and x and y from -1 to I (called
normalized device coordinates), and then maps this data to the viewport. This procedure
isolates device details from the basic mapping process and is useful when data must be
clipped. The data is clipped in normalized device coordinates, which are independent of
both the window and viewport, thus isolating the clipping process from them.

Often graphics packages map world data into "clipping coordinates" prior to performing 2D
clipping in order to simplify the computations. The clipping coordinates of visible points
lie between 0.0 and 1.0. After clipping, the end points of visible portions of lines are
mapped to device coordinates and drawn. The process is: (1) apply the transformation [T1]
to map world coordinates into clipping coordinates, (2) 2D clip, and (3) apply the
transformation [T2] to map the clipped coordinates into device coordinates. Given a square
window in world coordinates with center (wcx, wcy) and half-size ws and a square
viewport in device coordinates with center (vcx, vcy) and half-size vs:

(a) Show the basic transformations forming [T1] in symbolic functional form.

(b) Show [T1] as a single matrix.

(©) Find the expressions for the clipping coordinates of the world data point midway
between the window center and right boundary.

(d Show in symbolic functional form the basic transformations forming [T2] for

drawing on GRAFIC windows.
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4. Window to viewport mapping transforms world data into device data based on a window
[wex,wey,wsx,wsy] and a viewport [vcx,vey,vsx,vsy]. Derive this transformation as a
single matrix with symbolic equations as its elements. Assume the X and Y data and device
axes are parallel .

5. How could the font data and code for Symbo1l in Figure 3-12 be modified to produce
proportional spacing?

6. Draw a diagram illustrating end point codes for the line clipping algorithm. Explain how
and why they are used.

7. Show the list of basic transformations in functional form that will make object B from

object A in the following figure.

0,0

8. Character fonts for raster displays are often defined as closed boundaries consisting of
straight lines. A character instance is drawn by setting all pixels in the interior of its
transformed boundary.

() Diagram and explain the data structure necessary to store such a font.

(b)  Explain, in step by step form, how to implement the routine
DrawCharacter (ichar, h, v), which draws the character whose ASCII code is
ichar at the location [h,v] on the screen using GRAFIC.

9. A low-cost laser printer must be sent an entire 8 by 10 inch page of pixels (in scan-line
order). The page is printed after all pixels have been received. Each pixel is represented by
a character: 'b' for black, 'w' for white. The printer has x and y resolutions of 300 pixels/
inch. Describe the software needed to produce a printed page on this device, starting with
an application program that calls the following routines:

1. STARTPICTURE is called to initialize plotting.
2. LINE( x1, y1, x2, y2 ) draws a straight line from (x1,y1) to (x2,y2), where the

coordinates are given in (real) inches from the lower left of the page.
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10.

3. ENDPICTURE is called to signify plotting is finished.

(A) Draw a block diagram showing the general organization of the software, including the
stages of processing, types of data, and flow of information starting with the application
program and ending with the printing process.

(B) Describe in detail the process of creating data for the printer after the application
program has completed.

Given the rotated window and horizontal viewport defined below, derive the window to

viewport mapping equations, first in functional transformation form, then in matrix form.
Window: Viewport:

VSX

; vsy

Xv
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Chapter 4. Dynamic Graphics

Dynamic graphics describes the use of refresh displays for graphical interaction which can

involve rapidly changing images and motion.

4.1 The Cathode Ray Tube

At the heart of all dynamic graphics systems is the cathode rayv tube (CRT), the
fundamental electronics for creating visible images on a screen. The basic elements of the CRT are

shown in Figure 4-1. The beam starts as a flood of electrons generated in the filument. cathode and

X & Y deflection systems beam

focusing system | screen
=% A\\N 0 | with

‘ g phosphor
| coating

A=Y
filarg ] T]

cathode
control grid

accelerating plates

Figure 4-1. Elements of a CRT.

control grid. The flood of electrons is focused into a concentrated beam by the focusing system and
accelerated into a narrow beam of high energy electrons by the accelerating plates. The beam is
deflected by charges in two pairs of charged plates, one horizontal and one vertical, in the
deflection system. The horizontal and vertical deflection voltages are controlled by signals from
the computer.

The basic display process begins with the computer setting the voltages in the horizontal
and vertical deflection plates to appropriate values for the desired beam location. This is done
through digitial-to-analog (D/A) converters connected between the computer and the display. The
computer sends digital values to the D/A converters that convert the values to voltages. The output

voltages of the D/A converters are connected to the X and Y deflection plates. The computer then
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pulses the beam intensity. Where the beam strikes the screen, the phosphor glows, causing a visible

dot. The beam must be turned off quickly to avoid burning the phosphor. This forms the basic point

—(Cx_—
Computer
|

Figure 4-2. Configuration of a Point Plotting Display.

plotting display (Figure 4-2).

When the beam is turned off, the glow decays rapidly based on the persistence, or rate of

light decay, of the screen phosphor. The glow decays very quickly, so the image must be refreshed
Intensity

100%

Threshold

p Time
Figure 4-3. Decay in Intensity of Phosphor Light.

(re-drawn) often, typically every 1/30 - 1/60 sec., even if the picture does not change. If the glow

Intensity A Start  End
,\ ’\ r\ Average
M \l u \l \ intensity
! ! . Time
Refresh Cycle

Figure 4-4. Intensity Variations Due to Refresh Cycles.

fades too much before it is refreshed, the eye will detect this intensity variation as flicker.
What would be needed to draw lines instead of points? The display hardware is only
capable of drawing dots at locations on the screen, so it is a raster device, similar to the electrostatic

plotter and laser printer. Therefore, a stepping algorithm could be adapted for use here, too. Given
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the screen locations of two end points of a line to be drawn, the task of the stepping algorithm is to
compute the screen locations of the dots that best represent the line. As before, the stepping

algorithm will start at one end point and compute “steps” to the next screen locations, ending at the
other end point. In this case, a step consists of increments in the horizontal and vertical screen X

and Y position.

Hardware can be added to the basic point plotting display to produce two different types of

refresh display technology:

Vector continuous random lines: the beam motion is directly controlled by the
display commands. The picture is actually drawn by the beam, analogous to
pen plotting.

Raster ordered dots: the beam motion always follows the same path. The picture
depends on the appearance of the dots, analogous to laser printing.

We will focus on raster technology first.

4.2 Raster Displays

As already mentioned, the common usage of the phrase raster graphics means the image
is drawn in dots, that can be black & white, in shades of gray, or in colors. Raster graphics is based

on the television CRT scanning display technology, or video.

4.2.1 Video Technology

A typical television has about 525 scan-lines (rows of dots across the screen) and 640 dots

per scan-line. The signal received by a television defines every dot on the screen during every
”scan-cyclz The dots are called picture elements, or{ ’ pixels. "

The length of the scan-cycle is 1/30 second. In 1/30 second, the beam displays all pixels,
illuminating them with the correct color/intensity. Televisions actually display the image using
interlace. The even-numbered scan-lines are refreshed during one 1/60 second cycle, and the odd-
numbered lines are refreshed during the next 1/60 second. Interlace smooths the displayed image
by reducing the effects of beam motion variations.

Now consider creating the video signal from a computer instead of a camera and
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Figure 4-5. Beam Motion for Interlaced Raster Display.

transmitter. Such a raster display must draw each pixel 30 times per second to maintain the image.

Just as a television constantly receives new images from a transmitter, the raster display hardware

_/

must repeatedly process its data to the display screen to refresh the image.

We call this hardware a raster display processor.

Computer Raster
Computer Data Display |- CRT
et (image) Processor
— When the Picture Changes 3 Every Refresh Cycle - \
(30 to 60 hz)

Figure 4-6. Raster Display Process.

4.2.2 The Bitmap Display

The simplest raster display processor is a bitmap display, or a black & white (B/W) display.
It is so named because, like our discussion of the electrostatic plotter, it uses one memory bit to
determine the on/off state of a particular pixel drawn by the display processor. The major
difference between the bitmap display and the electrostatic plotter is that it is no longer a static
display device. Pixels can be turned on or off each refresh cycle.

Digital data corresponding to the screen image must be maintained for the display
processor. This data is stored in computer memory, called pixel memory. In the case of a bitmap

display, pixel memory contains one bit (binary 0 or 1) for each pixel. Another term for pixel

memory is frame buffer.
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We refer to the numeric value of each pixel as pixel value. A bitmap display has pixel

values that are 0 or 1, corresponding to black or white (or vice-versa).

Pixel Memory CRT Screen h
0,0
=
row v pixel h,v 1 text
column h v v

Figure 4-7. Pixel Memory Organization.

4.2.3 Pixel Memory Logic

Pixel memory can be considered as an array of numbers whose dimensions depend on the
screen size. The memory is organized into height scan-lines, each containing width pixels.

Think of this as a two dimensional array, pixels [wic dth,height] (Figure 4-8) . We impose

[0,0] width pixels per scan-line

»

height scan-lines —h>

pixels[h, v}

v
"y

Figure 4-8. Pixels Array Variables.

a coordinate system on the pixel array by numbering each pixel by its position as the “ph» pixel in

the “v® scan-line: i.e. the coordinate [h,v], with the first pixel in the upper-left corner having
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coordinates [0,0]. Historically, the video display order dictates this choice of coordinate system.

It is now possible to alter the display by changing the values in the pixels array. For
example, setting a pixel is simply the statement: pixels[h,v] = BLACK. This pixel will be
displayed black by the display processor during the next refresh cycle. The statement
pixels[h,v] = WHITE “clears” the pixel, i.e. sets it to white, which is often the “background
color.” One could think of this as “erasing.”

A 512 by 512 black-and-white display requires 256K (K = 1024) bits of memory. Also,
every pixel is displayed each refresh cycle, even if you have not drawn anything on the screen. That

is, a pixel always has a value that is displayed.

4.2.4 Raster Drawing Operations

With the basic ability to set pixel values using their screen coordinates, now consider some
basic raster drawing operations.

For example, straight lines can be drawn between pixel locations using a stepping
algorithm in which a step is defined as changing pixel coordinates, like rasterization. For example,
a minor raster step means incrementing or decrementing the h coordinate and setting the pixel
value at the resulting [h,v]. Lines are drawn by stepping across all pixels nearest to the exact line,
using the raster Bresenham stepping algorithm, and setting the pixel value for each step.

Another typical raster operation is filling an area, like a rectangle, with a given pixel value.
The location and dimensions of a rectangle are specified in different ways, for example as the upper
left [h,v] coordinates and the width and height (as in X windows), or alternatively the upper left
and lower right coordinates (as in Macintosh Quickdraw). Given the rectangle, we simply use
nested loops to set every pixel within the rectangle boundaries.

An interesting variation of the drawing processes is allowing pixel patterns, such as “50%
gray”. Typically, a pattern is an ordered sequence of varying pixel values specified over an area.
For example, 50% gray would be alternating black and white pixels across and down scan-lines. It

is possible in most packages to specify a pattern for the “pen” that is applied to lines or filled areas.
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4.2.5 Gray Scale Displays

In order to display shades of gray the display processor hardware must allow a range of
intensity values to be displayed at each pixel location, called a gray scale display. Instead of the
two values on and off, pixel values are now integers that will be converted into intensities by the
hardware each refresh cycle. The pixels array contains integers with sufficient bits to hold the range

of pixel values.

Suppose we need 1024 gray levels. This means that pixel memory must hold pixel values

10
between 0 and 1023, so at least 10 bits per pixel are needed (1024 possibilities =2 ). The resulting
pixel memory can be envisioned as a two dimensional array of 10 bit integers, i.e.
int pixels[512,5 12], that can be conceptualized as a three dimensional screen as shown in

Figure 4-9. Pixel memory is now “512 by 512 by 10 bits deep”, requiring 2,621,440 bits.

" - bits per piyy LLLLE L
[0,0]

V]

~
>
=
A

pixel [h,v]/

"y

Figure 4-9. Three-Dimensional Conceptual View of Screen Pixel Memory.
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4.3 Review Questions

1. Show the memory configurations, including necessary sizes of the hardware components,
for two raster display systems capable of displaying 4096 simultaneous colors on a 1024
by 1024 screen: one with direct color and one with mapped color.

2. The Bresenham algorithm computes “steps” that approximate a straight line. The algorithm
can be adapted for different devices.What is the Bresenham “step” for a pen plotter? What
is the Bresenham “step” for a raster display?

3. Some raster displays have pixel values of black=1 and white=0, while others have white=1
and black=0. If the background color of a given display is white and the foreground (pen)
color is black, show the pixel values and explain the visible results of drawing one line in
XOR pen mode for each of these cases.

4. Draw a labelled diagram and describe the operation of the two system configurations for a
1280 pixels by 1024 scan-line raster display capable of displaying 4096 colors, at least 512
colors simultaneously — one with direct color and one with mapped (VLT) color.

5. Draw a labelled diagram and describe the display memory contents and the refresh process
for:
€)) a 1024 by 1024 B/W random vector display,

b) a 1024 by 1024 by 12 color raster display with a VLT.
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Chapter 5. Color

Previously, we have concentrated on the hardware processes and programming techniques
for producing single-color images, either black & white or shades of one color. Although the basic
mechanism for producing color on a CRT turns out to be a relatively simple extension to what we
have already seen, the production and perception of color is a considerably more complex problem
that has been studied for hundreds of years. Creating a meaningful color display requires an
understanding of various physical and perceptual processes, including a fundamental

understanding of the physical properties of light, human color perception, color CRT operation,

and computer models for color representation.

5.1 Light

Light is electromagnetic radiation, energy, that is emitted from light sources such as
incandescent bulbs and the sun, reflected from the surfaces of objects, transmitted through objects,
propagated through media such as air, and finally reaches our eyes. There are several models that
have been proposed to describe the physical behavior of light. Generally, it is viewed as having
both the properties of particles and waves. The model most appropriate for computer graphics

describes light as an oscillating electromagnetic wave, as illustrated in Figure 5-1. As a wave, light

amplitude

V\wielength

propagation
direction

Figure 5-1. An Electromagnetic Wave.

has the wave properties of frequency v, wavelength A, and amplitude. It is known that frequency

and wavelength are related by A = 5 , where c is the speed of light in the medium (for a vacuum,
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¢ = 2.998 x 10® meters/sec). Wavelength is usually given in units of micrometers “um” ( 107%) or

nanometers ‘“‘nm” (10’9). The electric field intensity of the wave varies sinusoidally in time and
space as a function of amplitude and frequency.
Visible light, the light that the human eye can perceive and thus the light that we can see,

is only part of the entire electromagnetic spectrum, as shown in Figure 5-2 and Figure 5-3. The term

Visible
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Figure 5-3. Colors in the Visible Light Spectrum.

“light” for our purposes means electromagnetic radiation with wavelengths in the range 380 nm to
770 nm. Generally, light that we see is not just a single wavelength, but consists of a continuous,
non-uniform distribution of single-wavelength (monochromatic) components. The graph of
intensities versus wavelengths forms a spectral distribution, or spectral reflectance curve, as

illustrated in Figure 5-4. The term spectral means variance with, or dependence upon, wavelength.

5.2 Color Perception

Humans perceive color by differentiating the chromatic and achromatic characteristics of
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A

energy
intensity

wavelength
Figure 5-4. Spectral Curve of a Color of Light.
light. The achromatic characteristics are largely determined by the intensity and the chromatic by
the wavelength. The differentiation is the result of many factors:
1. the physical characteristics of the object itself and its capacity to reflect or absorb

certain wavelengths of light,

2. the properties of the light source illuminating the object,
3. the medium through which the light travels and the distance through the medium,
4. the properties of the surrounding objects or area,
5. the biochemical state of the eye and visual system upon stimulation,
ﬁ( 6. the transmission characteristic of the receptor cells and neural centers,
7. the subject’s previous experience with the object or sensation.

The first four factors pertain to the physical properties of the objects and their surrounding
environment, and can be precisely determined. The last three deal with the physiological
characteristics of the human visual system and vary from person to person, even with normal visual
systems. For example, individuals will discern different transition points at which an object
appears either red or orange, even though the physical situation does not vary. [Cychosz]

The human eye consists of a sensor array of photo-receptors known as the retina, and a lens
system under muscle control that focuses the visual stimulation on the retina. The retina consists
of two types of sensors: rods and cones. Rods are primarily used for night vision and respond
achromatically to a given stimulus. Cones are used for color vision in normal lighting and respond
primarily to wavelength.

Color is interpreted by the brain based on the stimuli from three types of cones that are
distributed over the retina. Each cone absorbs either reddish light, greenish light or bluish light.

The distribution of cones is not uniform. Sixty-four percent of the cones absorb red pigment, thirty

Chapter 5. Color



5.3 Color CRT Operation 54

two percent absorb green, and only two percent absorb blue. Figure 5-5 shows the relative
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Figure 5-5. Spectral Response Curves for the Three Cone Types ({}. v and p).

sensitivities of the three cone types [Hunt 1987, page 13]. The stimulus information sent to the
brain through the optic nerve by the receptors conveys a luminance (also called lightness,
brightness and intensity) and two color ratios: a red-to-green ratio and a yellow-to-blue ratio.

As a result of this experimental data, it is believed that the eye responds primarily to
intensities of three color Aues, red (around 650 nm), green (around 530 nm) and blue (around 460
_three primary colors: red, green and blue. This is sometimes referred to as the trichroma or tri-
stimulus theory, and dates back to the 1800’s. This theory is applied in the design of color display

systems and color printing equipment.

5.3 Color CRT Operation

From a programming standpoint, color raster displays function like three gray level display
processors (Figure 5-6) whose outputs are passed through red, green or blue filters and focused on
a single pixel on the screen. The color of each pixel is defined by intensities of red, green and blue
that are sent to red, green and blue CRT guns. Pixel memory can be configured in two ways, called
direct color and mapped color.

In Direct Color displays, the pixel value contains the component colors (Figure 5-7). Pixel
memory can be configured in different ways depending on the arrangement of the RGB

components in computer memory. Some systems represent the RGB components for each pixel
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Figure 5-6. Color CRT Schematic.

Pixel Memory

pixel h,v

pixel value

t
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to CRT guns
>

Figure 5-7. Direct Color Display.

within one computer word. Others separate the RGB components into three arrays in memory. In

the first method, the RGB components of a pixel are obtained by accessing the pixel value at the

appropriate array location in pixel memory and then dissecting the pixel value with binary

operations. In the second method, the RGB components are individually accessed from the

appropriate arrays.

For example, consider the simplest direct color display with one bit for each color

component. Each pixel would have 3 bits, (i.e. "3 bits per pixel"), one for red, one for green, and

one for blue. The display would be capable of displaying the 8 colors shown below.

R Component

b e = OO OO

G Component B Component Pixel Value  Color Name

0 0 0 Black

0 1 1 Blue

1 0 2 Green

1 1 3 Cyan

0 0 4 Red

0 1 5 Magenta

1 0 6 Yellow

1 1 7 White

In Mapped Color displays, the pixel value is an index into a separate array of memory in
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the display called a Video Lookup Table, or VLT. Each entry of the VLT contains color components

that are set by the host computer. Each refresh cycle, the raster display processor accesses each

Pixel Memory VLT
pixel h,v pixel value
® L
T R|G|B
-
£ Lite 1o pical !___>——> to CRT guns
’ >

Figure 5-8. Mapped Color Display.

pixel value from pixel memory and uses the RGB components from the VLT location addressed

by the pixel value for the pixel color. The VLT is also called a Color Lookup Table, or CLUT.

Mapped color systems provide a means for reducing the size of pixel memory (and
therefore the cost of a system) when it is acceptable to choose a subset of colors from a large palette

of possible colors. For example, most workstations today with color displays are mapped systems

capable of displaying ‘256 colors chosen from a palette of 224 possible colors.” (The number 2%
is over 16.6 million.) To understand the physical configuration of such a display, break down the
quoted phrase in the previous sentence. “256 colors” means simultaneous colors on the screen at

one time, so pixel memory must be able to store 256 different colors. Therefore, pixel memory
must have log, 256, or 8, bits per pixel (i.e. 28 = 256). “Palette” is a term often used for VLT, so

“256 colors” also means that there must be 256 VLT entries that can be indexed by the pixel values.

224

All that remains is the format of each VLT entry. The phrase “palette of 2" possible colors” tells

us that each entry must be able to store 224 colors, i.e. each entry must contain 24 bits. The entry
must be divided into three components for RGB, so we can safely assume that each VLT entry
contains 24 divided by 3, or 8 bits per component. It would be very unusual not to use the same
number of bits for each component. Figure 5-9 shows a schematic diagram of the configuration of
such a display system.

224

A direct color system capable of displaying 2" colors would require 24 bits per pixel. This

is a significantly more costly system. The difference is sometimes subtle: the mapped system can

display only 256 colors at once because each pixel can represent only 256 possible values. Each
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VLT (256 entries)

Pixel Memory 0

pixel h,v / 24 bits/entry, 8 bits/component
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Figure 5-9. Configuration of a 256 Color Mapped Display System.

pixel value is mapped to a VLT entry, however, that can contain 224 possible values (colors). The

24-bit direct system, sometimes called a “full color” system, can display 224 colors at once, but has
three times as much pixel memory (24 bits per pixel versus 8 bits per pixel). The additional
memory required for the VLT is generally insignificant. In this example, 256 24-bit words is small

compared to 512 by 512 or 1024 by 1024 pixels in pixel memory.

5.4 Additive and Subtractive Color

Color raster CRT’s transmit light to the eye via illumination, so colors are formed by adding
the three primary colors, red, green and blue, called the additive primaries. The secondary colors,

cyan, magenta and yellow, are formed by combinations of these primaries (Figure 5-10).

G + B = Cyan (sky blue)
Magenta
R + B = Magenta (purple) '

R + G = Yellow (actually reddish green)

R+G+B = white

Figure 5-10. Primary and Secondary CRT Colors.
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A painter mixes yellow and blue (really cyan) to make green. This does not agree with CRT
color, where green is a primary. The difference is that mixing paint and CRT color production

involve different physical processes. Consider this from the point of view of light that reaches the

eves. For paint, we see reflected light resulting from incident light (typically white light, light
containing all colors) reflecting from the surface of the paint. Physically, light represented by a
certain spectral curve irradiates the surface from a certain direction and interacts with it in complex
ways. Some of the light may be absorbed by the surface, some may be transmitted through the
surface, and some reflects from the surface to our eyes. These interactions alter the spectral
properties of the light, changing its spectral curve and therefore its perceived color. The reflected
light has different spectral properties (color and intensity) than the incident light.

Consequently, the color of paint is reflected light from which certain amounts of each RGB
cémponent from the incident light have been removed (or filtered), thereby changing the light that
reaches our eyes. The so-called subtractive primaries, cyan, magenta, yellow (‘CMY), actually
filter one trichromatic component (RGB). |

For example, consider what color is produced when white light shines through a layer of

cyan cellophane and a layer of magenta cellophane (Figure 5-11) The cyan cellophane filters or

(white light)

Figure 5-11. Light Transmitted Through Cellophane.

blocks the red component, and the magenta cellophane blocks the green. Therefore, only blue

passes through both layers.

5.5 Color Representations

To this point, we have seen that light is a distribution of energy intensity at all wavelengths
in the visible spectrum, that the human eye is a complex sensory system that responds primarily to

three colors, and that the CRT produces color by illuminating three colors at given intensities at
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each pixel. How then can this information be used to represent color for computation and display
in a program?

A number of schemes exist for representing color that are based on the trichromatic
characteristics of color perception. Generally, these are mathematical and computational
algorithms, g@r models, that determine three color parameters in terms of either a spectral curve
for a color, or 11{ ter;ns of three color parameters in a different color representation. Some color
models can be shown as a three-dimensional volume, the color space, in which colors are points
defined by the three color parameters, the color coordznates.

The color spaces can be classified in three ways: perceptually-based uniform spaces,
_perceptually-based non-uniform spaces, and device- directed’ spaces Perceptually-based color
spaces provide easy manipulation of color from a qualitative point of view and are useful for
déveloping user-interfaces to specify colors for graphical applications. Uniform color spaces vary
color uniformly across the space so that the “distance” between two colors is proportional to the
perceived color difference. This is important for accurately simulating physical situations, such as
theatrical lighting, and for accurate color comparisons. Device-based color spaces are founded on
particular stimulant characteristics of a given device or color presentation medium. These spaces
are developed statistically using color matching schemes and, in reality, only approximate a
uniform space.

The following sections present a number of popular color spaces: device-based color

spaces: RGB, CMY, CMYK, YIQ and XYZ; perceptually-based color spaces: HSI and HSV; and

perceptually-based uniform color spaces: Luv and Lab.

5.5.1 RGB Color Space

The red, green and blue color components of the CRT can be viewed as a point in three-
dimensional Cartesian space with the coordinates [R,G,B] (Figure 5-12), where the coordinates
usually lie in the range [0,1]. The RGB space is the fundamental color representation for all colors
that are to be displayed on a CRT. Eventually, colors in all other color spaces must be transformed

into RGB coordinates for display.
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color= [R,G,B]

R /ﬁ: PN
shades of gray are along this line
Figure 5-12. RGB Color Space.

5.5.2 CMY and CMYK Color Spaces

Color reproduction on hardcopy devices, such as printing, requires all colors to be
represented as intensities of cyan, magenta and yellow. The conversion equations from RGB to

CMY color coordinates are simple linear transformations:

C 1 R

M| = |1 |G

Y 1 B
and for CMY to RGB:

R 1 C

G| = |[1|- M

B 1 Y

As usual, these equations assume the coordinates are real numbers in the range [0,1]. The CMY

color space is shown in Figure 5-13.

black
color=[C,M,Y]

white
C

grays are along this line
Figure 5-13. CMY Color Space.
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As an example, consider how to produce Cyan on a CRT. The CRT requires color in RGB,

so we must compute the RGB coordinates from the CMY. Cyan is [1,0,0] in CMY space.

R 1 1 0
G| = (1|~ |0 = |1
B 1 0 1

The color Cyan in RGB coordinates is [0,1,1], 1.0 intensity Green and 1.0 intensity Blue.
Now consider how to print Red. For this, we must compute the CMY coordinates from the
RGB. Red is [1,0,0] in RGB space,
C 1 1
M| = |1|—|0| =
Y 1] [0

— = O

The color Red in CMY coordinates is [0,1,1], 1.0 intensity Magenta and 1.0 intensity Yellow.

Black is produced by equal amounts of CMY, which means combining equal amounts of
three paints or three inks. In practice, this results in an unpleasant dark-brown color as well as
consuming ink (or paint) from all three colors. Some printing devices include a black ink cartridge
and consider black as a separate color. This is the CMYK color space, where ‘K’ stands for black.
Unfortunately, it is a four-dimensional space that is not readily illustrated.

The conversion formulae for CMY to CMYK are [Foley]:

C C -K

K=min(CMY) [M|_. M|, |-K
Y Y| |-K
K 0 K
and for CMYK to CMY:
C c| [K
M| = M|+ |K
Y Y| [K

It is necessary to go through CMY to convert between CMYK and RGB.

5.5.8 YIQ Color Space

In 1953, the NTSC (National Television Standards Committee) recommended a set of

transmission primary colors, known as YIQ, as a basis for the broadcast color television signal
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[Smith]. This is basically an adjustment to the standard RGB space that was considered to be more
‘appropriate for television transmission and viewing. Like many color models, it is related to the

RGB space through a linear transformation that is compactly represented in the matrix equation:

Y 0.299 0.587 0.114||R
I| = [0.596 -0.275 -0.321| |G
Q] 0.212 -0.523 0.311] (B

The conversion from YIQ to RGB involves the inverse of the matrix:

R 1 0956 0.620]|Y
G| = |1 -0.272 -0.647|| 1
B| [1-1.108 1.705]|Q

The Y coordinate is the luminance, the brightness perceived by the viewer, and is the only
signal received by a black-and-white television. The I and Q components are two chrominance
values that determine the color of a pixel. They are derived from the modulation technique used in

NTSC broadcast signals.

5.5.4 XYZ Color Space

In 1931, the Commission Internationale de I’ E clairage (CIE) defined three standard
primary colors, called X, Y and Z, as alternatives to R, G and B for color matching. The XYZ
coordinates are based on three spectral matching functions, X(A), Y(A), and Z(A) shown in Figure

5-/4 that were developed based on color matching experiments and desired mathematical

1.87

164 //|Z matching curve
3 1%

- 14 =
= 12 }Y matching curve
= 7 __[ X matching curve
% b 4
S 08 J #
£ ] FiWi
&5 U
7 N A\

0.2

]

380 430 480 530 580 630 680 730 780
wavelength (nm)

Figure 5-14. CIE Spectral Matching Curves.
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properties. The Y(A) curve matches the luminance response curve of the human eye, i.e. the eye’s
sensitivity to spectral wavelengths. These color matching functions are tabulated at 1 nm
wavelength intervals [Wyszecki and Hall].

The CIE coordinates, [X,Y,Z], are computed from the spectral curve of a given color, I(A),

as integrals

X = kf IO)X)dA Y =k j 1) YV dA Z = kjl(x)Z(x)dx

where k is a scaling constant appropriate for the lighting situation [Foley, p. 580]. In practice, I(A)
is also tabulated at 1 nm intervals and the integration is done numerically by summation.

The XYZ coordinates include luminance information in addition to chroma. To remove the
luminance factor, XYZ coordinates can be scaled to normalized values, i.e. each coordinate is
divided by the sum X+Y+Z, resulting in xyz coordinates (lower case), called chromaticities. Note

— N~

that x+y+z =1 by definition, so only the x and y coordinates are needed. The two dimensional plot
AN

of these [x,y] values is called a chromaticity diagram and bounds the colors in the XYZ color

space. The CIE xyz chromaticity diagram is shown in Figure 5-5 .

0.8 "_"‘x\\
y .
chromatiotty \ >

.
0.2
\ fj,,f”f
o N
0 0.10.20.30.40.50.60.7
x chromaticity

Figure 5-15. CIE xyz Chromaticity Diagram.

The chromaticities of a color can be measured with an incident light chromaticity meter.
This can be done for a color monitor to calibrate its red, green, blue and white colors for precise
color presentation. From the measured chromaticities it is possible to compute the transformation

between RGB to XYZ. Mathematically, the chromaticities are the [x,y,z] values corresponding to
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the RGB primaries (red=[1,0,0], etc.). These reference colors are solved to form the transformation

of the form
R X
G| = [xyztorGB]|Y
B z

where XYZtoRGB is a 3 by 3 transformation. White is used to scale the values. The resulting
transformation relates the monitor’s RGB values and the standard X'YZ coordinates.

The NTSC provides a standard set of [x,y,z] chromaticities: red = [0.67, 0.33, 0.0],
green = [0.21,0.71, 0.08], blue = [0.14,0.08,0.78] and white = [0.313, 0.329, 0.358]. The resulting

transformations from XYZ to RGB are,

R 1.967 -0.548 -0.297| (X -
G| = |-0.955 1.938 -0.027||Y
B 0.064 -0.130 0.982||Z

and from RGB to XYZ:

X 0.589 0.179 0.183| [R
Y| = |0.290 0.605 0.104| |G
Z 0 0.068 1.020||B

5.5.5 HSI Color Space

To produce several shades of blue ranging from light blue (almost white) to dark blue
(almost black) is difficult using the RGB, CMY, YIQ or XYZ device-based color spaces.
Perceptually-based colors spaces were developed to provide a more intuitive way to define colors
for graphics programming. Perceptually-based color spaces use hue, saturation, and intensity (or
brightness, lightness, value) as color coordinates.

Hue is the basic component of color and is responsible for the perceived color sensation. It

is directly related to the dominang Wavelengthi?f the given color. It is important to keep in mind
that wavelengths are a physical prc;perty andthat color is a psychological effect. All color
perceived is a result of the stimulation of the photo-receptors in the visual system. Thus, the
presence of reddish and greenish wavelengths of light does not produce yellowish wavelengths

light, even though the resulting light would be perceived as yellowish because of the way
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individual sources stimulate the retina.

presence of achromatic light (light with a horizontal spectral curve), the less saturated a color
becomes. As saturation decreases, the dominant hue becomes more difficult to discern. Chroma is
the colorfulness compared to white or the level of illumination. Gray is unsaturated, whereas pure
monochromatic red of low intensity has high saturation and low chroma. Saturation generally is
independent of intensity, whereas chroma depends on intensity.

Lighznesi and Brightness are often used in describing color. Brightness varies from black
to bright, representing tl;;st};néth of the stimulation as if the stimulant is self-luminous. Lightness,
on the other hand, varies from black to white representing the reflected intensity of a diffuse
surface that is externally illuminated. Thus, as the intensity of the illuminating source increases,
the color of the surface becomes de-saturated as it approaches white in color. Here, we use intensity
for lightness.

Thewqg_a}fi_on-intenys’_jg;(HVSﬂI) color space, also called hue-saturation-lightness (HLS),
is a popular perceptually-ggééd color space that is a double cone with either flat sides (called a

“hexcone” as shown in Figure 5-16) or as a rounded double inverted cone with curved sides. Colors

{7

Ty

Green (2/6 or 120°),/ \\, Yellow (1/6 or 60°)

Cyan (3/6 or 180°) 0.5

Blue (4/6 or 240°)\ -/ Magenta (5/6 or 300°)

Figure 5-16. HSI Color Space.
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are points within the volume of the double cone. Some representations draw the space as a cylinder
with black on the bottom surface and white on the top surface. Think of slicing the color cone at a
given intensity, producing a two-dimensional color wheel of hues varying around and saturations
varying radially.

Hue (H) is the angular coordinate. It is represented by the angle around the equator of the
cone, normalized to lie in the range [0,1] or [0,360]. Note that this does not follow physical
wavelengths exactly. There is no reddish-blue in the electromagnetic spectrum.

Saturation (S) is the radial coordinate. Full (1.0) saturation is what one might describe as a
“deep” color. Colors with zero saturation, shades of gray, are located along the axis connecting the
tips of the cone. Full saturation is on the outer surface of the cone.

Intensity (I) is the vertical coordinate. Zero intensity of any hue and saturation is black.
One-half intensity is along the equator. Full (1.0) intensity of any saturation and hue is white. The
“pure” colors (fully saturated, without achromatic light) lie in the plane at half intensity.

A color given in HSI coordinates is converted to RGB coordinates in a two step process.
The first step is to compute the relative RGB values, [R”,G",B], using only the hue (H) coordinate.
This is similar in nature to finding “chromaticity ratios” without regard to luminance.

These values can be represented as periodic functions that cycle through the visible light
spectrum as approximated by the RGB primaries. The linear versions of the functions,

corresponding to the hexcone, are tabulated below and are graphed in Figure 5-17.

H R’ G’ B’
0 to é 1 6H 0

1 2

1102 2-6H 1 0

2 3

Zto: 0 1 6H-2
3 4

210 0 4-6H 1

4 5

202 6H-4 0 1

g to 1 1 0 6-6H
1 2

R’G’B’ are converted to RGB as follows:
For0<1<€0.5:RGB=21(05-S(R’G’'B’-0.5))
For0.5<I<1:RGB=05+S(R’'G'B’-0.5)+(21-1)(05-S(R’G’'B’-0.5))
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0 1 2 3 4 5 1
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H

Figure 5-17. R°"G'B” Ratio Functions.

As an example, consider creating realistic images of objects by simulating of the effects of
light reflecting from surfaces. White light reflecting from an object of a certain color produces
different shades of that color. The problem, then, is to produce a range of shades of a given color,
i.e. different intensities of a basic hue and saturation. HSI is a convenient color space for these
computations. Given the hue and saturation of the basic color, vary the intensity (I) between 0 and

1 and produce an RGB for each. For example, the following table shows five shades of the color

red.
I R G B
1 0.00 0.0 0.0 0.0
2 0.25 0.5 0.0 0.0
3 0.50 1.0 0.0 0.0
4 0.75 1.0 0.5 0.5
5 1.00 1.0 1.0 1.0

Examine the color paths of through the five colors in the HSI and RGB color spaces (Figure
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5-18).

5 White

2

1 Black

Figure 5-18. Spectrum Colors in HSI and RGB Spaces.

5;5.6 HSV Color Space

The Hue-Saturation-Value (HSV) space, also called Hue-Saturation-Brightness (HSB), is
similar to the HSI color space. Geometrically, there is a single cone and the center of the top circle

represents white (Figure 5-19). A color given in HSV coordinates is converted to RGB coordinates

Vv
Green (2/6 or 120°) * Yellow (1/6 or 60°)

\ / ~ HSV D
\ L
Blue (4/6 or 240°) '\ I- Magenta (5/6 or 300°)

Cyan (3/6 or 180°) | L 0|, White Red (0)
! Sk
|
!
|
|
|
|

Black
Figure 5-19. HSV Color Space.

in a two step process. The first step is to compute the R°G"B” ratios as described previously for the
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HSI space. Given the R°G"B” ratios, RGB coordinates are computed as follows:

R 1 R| |1
G| = V| |1{+5 || |1
B 1 B' 1

5.5.7 Luv Color Space

The Luv space is a uniform color space developed by the CIE that 1s perceptually linear and

is useful for color comparison. It relates to the XYZ space through the following non-linear

Y \1/3
L = 116(Y—0) -16

u = 13L(u'-u'y)

equations [Hall p. 55]:

v = 13L(V'-V'y)

where
o = 4X v = 9Y
T X+15Y+3Z T X+15Y+3Z
4X, ' 9Y,

u = Vv =
07 X,+15Y,+3Z, 07 X,+15Y,+3Z,

[Xo,Y,Zg] is the color of the white reference point

The equations assume reference white has been normalized such that Y= 1. The NTSC primaries
can be used for standard monitors. Equal steps in L represent equal steps in the perceived lightness

of related colors.
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These equations can be solved for the conversion equations from CIE Luv to CIE XYZ:
v - Y,(16 +L)3
© 1560896

9(u+13Lu'))Y
~ 4(v+13LV))

, Y (156L - 3u - 39Lu'y — 20v — 260Lv'))
- 4(v +13Lv',)

Note that the order of the equations is important (X and Z depend on the value of Y). It is necessary

to convert between the CIE XYZ coordinates and RGB coordinates to display CIE Luv colors.

5.5.8 Lab Color Space

The Lab space is perceptually-based uniform color space developed by the CIE that is a
mathematical approximation to the well-known Munsell color system. The Munsell color system
is based on a discrete set of equally spaced color samples. These samples are represented as
discrete volumes and arranged as a cylindrical volume of varying radius. The Munsell hue is
defined as the angle about the axis of the cylinder. The Munsell chroma (i.e., saturation) is defined
as the radial distance and the Munsell value (i.e., lightness) is defined along the axis. The Munsell
book consists of paint samples [Munsell] that is used to solve color matching problems. The
Munsell color solid is illustrated in Figure 5-20.

The XYZ to Lab equations are [Hall, p. 55]:

Y \1/3
L = 116(?-0) -16

a = 500((%)”3_(%)1/3)
()" -(5)")

where [X(,Y,Zg] are the XYZ coordinates of the white reference point.

o
1l
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NAME
RED
YELLOW-RED
YELLOW
GREEN-YELLOW
GREEN
BLUE-GREEN
BLUE
PURPLE-BLUE
PURPLE
RED-PURPLE

CHROMA ==

e AL ) e

45
] DIAGRAMMATIC VIEW

8s BLACK 55

75
1

Figure 5-20. Munsell Color System [Williams, p. 19].

The CIE Lab to CIE XYZ equations are:

_ Y, (16 +L)3
1560896
Y \1/3 Y \2/3 Y
3 o X X 3( X
Xo(a +1500a (Yo) +750000a(YO) + 500 (YOD
X =
5003
Y \1/3 Y \2/3 Y
_h3 21 1 _ : 3( 2
ZO( b3 + 600b (Yo) 120000b(YO) + 200 (YOD
7 =
2003
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5.7 Review Questions

1. Draw the RGB and HSI color spaces. Label the locations and give the coordinates in each
space of red, green, blue, black and white. Label the location and give the HSI coordinates
of the color 50% brighter than pure red.

2. Given the normalized (0.0 to 1.0) RGB color [ 0.1, 0.2, 0.3 ], explain how to create the same
color by mixing paints. Show necessary computations.

3. Show in step by step form how to compute an N color RGB spectrum from black to white
of shades of a color of a given hue (H) and saturation (S).

4. Explain how colors are produced by a CRT versus how colors are produced by an ink
ribbon printer, from the point of view of “light reaching the eyes.” Explain how to create

the color Yellow on a CRT and a printer.
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Chapter 6. Vector Display Systems

We have seen that programming for a raster display processor is a matter of setting pixels
in a frame buffer. Creating images for a vector display processor, on the other hand, is a very
different matter. We now return to our discussion of display processors, this time to discuss the
vector display processing unit.

As functionality is added to the vector DPU, its local intelligence increases and, in effect,
it becomes a computer whose main function is controlling the CRT beam. Similar to computers
used for computation, the DPU executes a repertoire of instructions. However, DPU instructions,
called display instructions, are for drawing lines and characters, controlling refresh, and
communicating with a host computer.

Also like a computer, to have the DPU do anything one must program it. In this case, it is

called display programming.

6.1 Display Programming

Assume we have taken delivery of a new vector display system, that is “driven” from a host
computer by instructions that are sent over a high-speed interface. The DPU, then, simply responds

to instructions it receives from the host, one at a time.

Vector Display
Processor

Host Computer

(Program) —Display

Figure 6-1. Vector Display Configuration.

We study its programming manual and learn that the screen coordinates range from -2048
to +2047 in x and y, with [0,0] at the screen center. The instructions must be sent as binary data to
the DPU, but for convenience to humans they have been given symbolic forms, or mnemonics.

MOVEA x,y move to the absolute 2D point (X,y)

MOVER dx,dy move by dx and dy
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DRAWA x,y draw to the absolute point (X,y)
DRAWR dx,dy draw by dx and dy

Now we must create the display program that will draw the desired picture when sent to the

DPU, in this case a square 100 units on a side and located at [100,100].

Instruction Comment
MOVEA 100,100; Move to (100,100)
DRAWR 100,0 ; Draw by (100,0)
DRAWR 0,100 ;  Draw by (0,100)
DRAWR -100,0 ; Draw by (-100,0)

DRAWR O,-IOO ;  Draw by (0,-100)
Figure 6-2. Display Instructions to Draw a 100 Unit Square.

wn A W NN =

6.1.1 Driving A Display without Memory

Next we manually translate (“assemble”) the display instruction mnemonics into a list of
binary data. (A program is usually used to convert these statement into binary instructions.) The
problem now is to transfer the display instructions to the DPU to make the image appear. Support
software in the host computer must be available to perform this data communication. We help a
systems programmer develop these routines according to our specifications. For additional
convenience, they should be callable from a high level language like C.

— void ToDisp( int arrayl[], int nwords );
sends nwords of display instructions to the display from the array.

Next we code a simple program to send this data to the display, a “display driving program”

(Figure 6-3). The beam movement on the display screen as this program is “executed” is shown in

main ()
{
static int dlist[5] = {
/* list of integers corresponding to the */
/* display instructions in Figure 6-2 */
}i

ToDisp( dlist, 5 );

Figure 6-3. First Display Driving Program.
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Figure 6-4.
Ya 4 3
SD
1 2
%

Figure 6-4. Beam Movement for First Display Program.

What happens when the program ends? The display driver program sent the display
instructions once, so the beam followed the path, causing the screen phosphor to glow along the
path. However, as we have seen, the display fades quickly away in less than 1/30 second.

It is necessary to refresh the display as long as the image should appear. The program must

be edited to re-send the data periodically to correct this problem (Figure 6-5).

main ()
{
static int dlist[5] = {
/* list of integers corresponding to the */
/* display instructions in Figure 6-2 */
}:

/* enter an infinite loop to periodically re-send data */
/* to the display */
for( ;; ) {

ToDisp( dlist, 5 );

/* compute */

WaitForNextRefreshCycle() ;

Figure 6-5. Second Display Driving Program with Refresh Loop.

There are different refresh methods for displays. What we just have seen is “on-line
execution from the host. It is certainly the least expensive DPU we can buy, but the refresh burden
is very demanding on our host computer. Consider also what happens if we add computations in
the previous program at the comment. If these computations take too long, i.e. require more time
than is left in the refresh cycle after the display instructions have been sent by ToDisp, then we

again are faced with flicker.
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To relieve the host computer of its refresh burden, newer systems contain their own
memory to store the display list. They do local refresh from this display memory, thus freeing the

host computer to do other things (like compute).

the display:
Host Computer Vector Display
Program — - Processor — Display
Display
Update Memory Refresh

Figure 6-6. Vector Display with Memory.

The UPDATE arrow shows the interface carrying display instructions sent by the host
computer to the display when the picture changes. The REFRESH arrow indicates the display
instructions being executed from the DPU memory each refresh cycle to refresh the screen image,
even if the picture has not changed. Thus, after sending the initial display program, the host does
not have to re-send data if the picture remains the same.

Display memory adds functionality to the DPU that is accessed using some new
instructions:

DHALT stop the display and wait to restart

DJSR addr execute a display subroutine call

DRET return from a display subroutine call

As one example, the DPU refreshes the display from instructions stored in the display
memory as follows:

1. The DPU starts at display memory location 1.

2. instructions are read from sequential display memory locations and executed until

a DHALT is executed.
3. After the DHALT, the DPU waits until the next refresh cycle time, then returns to
step 1.

Now we write another display program, this time to draw two squares, starting at display

memory location 1 (Figure 6-7).
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Display
Address Instruction Comment
1 DLIST: MOVEA 100,100 ; Move to (100,100)
2 DJSR BOX ; Draw the Box
3 MOVEA 500,500 ; Move to (500,500)
4 DJSR BOX ; Draw another box
5 DHALT ; Stop DPU
6 BOX: DRAWR 100,0 ; Draw by (1C0C,0)
7 DRAWR 0,100 ; Draw by (C,100)
8 DRAWR -100,0 ; Draw by (-100,0)
9 DRAWR 0,-100 ; Draw by (0,--07;
10 DRET Return

Figure 6-7. Two Squares Display Program.

6.1.2 Driving A Display with Memory

As before, we manually translate the display instruction mnemonics into a list of binary

data. We modify the support software in the host to perform this new data communication:

ToDisp ( int arrayl[], int nwords, int /{addr ) ;

send nwords of display instructions to the display, loading them from array and storing them

starting at display address daddr . The beam movement for this program is shown in Figure 6-9.

main ()

{

static int dlist[10]
/* list of integers corresponding to the */
/* display instructions in Figure 6-7 */

Y

ToDisp( dlist,

10, 1);

Figure 6-8. Two Squares Display Driver.

+ What happens when the program terminates? The boxes remain displayed because the

display is performing the refresh of the display instructions from its own memory.
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Ay

100,100

> X
Figure 6-9. Beam Movement for Two Squares Display Program.

6.2 Dynamic Display Manipulation

Expand this driving program to interact with a device, in this case an analog-to-digital

converter that is interfaced to the same computer as the display.

Host
Computer

CRT
(program) |

S |

Analog-Digital Converter

00000000
000000 )

/ "y

Figure 6-10. Hardware for Dynamic Display Manipulation.

Channel 1
Channel 2

Our interface routines, developed as the other, are:

int Readvolt( int ichan );

returns a numerical value that is the current voltage read from input channel ichan.
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int MakeMove( int x, int v );
returns a “MOVEA Xx,y” display instruction given an x and a y coordinate.

The new driving program is shown in Figure 6-11.

main ()
{
static int dlist[10] = { /* data as before */ };
int x, y;
ToDisp( dlist, 10, 0 );
for (;;) {

X = ReadVolt( 1 );

y = ReadvVolt( 2 );

/* Note: C arrays start at index 0 */
dlist[0] = MakeMove( X, ¥V );

ToDisp( dlist, 1, 1 );

Figure 6-11. Display Driver for Dynamic Display Manipulation.

What happens when the potentiometers are moved? The first box moves, because the
program over-writes the MOVEA instruction at location 1 in display memory with a new instruction
that was made by the MakeMove function from the x and y values read from the potentiometers.

Note that the display list is being changed as the DPU executes it. This is dynamic display
manipulation.

One can now think of many other desirable functions: changing the size of the box, adding
new boxes, deleting boxes “pointed to” by a “cursor” that we move with the potentiometers, etc.

This involves the development of a graphics package of routines which provide a variety of

functions:
1. manage display memory,
2. provide drawing functions for creating entities like lines, characters, etc.
3. provide logical organization of the display to permit adding, deleting, and other
operations on groups of entities,
4. provide input functions for obtaining screen positions from devices.
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6.3 Display Processors

There are many different types of raster and vector display processors. We will examine

two generic configurations. First, introduce the elements of display systems:

CPU central processing unit (hardware used to compute),

CPU memory the program & the data,

DPU display processing unit (hardware used to display),

DPU memory the display list,

refresh data path where the DPU executes display list,

update data path where the host computer changes the display list.

Case 1: Remote Display Processor with Local Memory

This system was discussed earlier during the driving program examples.

CPU DPU
interface — CRT
CPU —p | | DPU B
memory memory refresh
update

Figure 6-12. Remote DPU with Memory.

Generally, this display processor can be a raster DPU or a random vector DPU.

As a Random Vector DPU:

DPU memory consists of structured display commands, a display list.

As a Raster DPU:

DPU memory is unstructured pixel memory. In some cases, in addition to controlling the
beam to display pixels, the DPU can also act as a general purpose computer, accepting
“structured commands” from the host, such as “line” and “character”. These commands are
simply translated into operations on pixel memory. Their meaning is lost in DPU memory.

Case 2: The Raster Refresh Buffer
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This is an interesting variation on a raster display that incorporates a computer into the
display to simulate structured display operations. The DPU display list is maintained by DPU #1,
an internal computer, which interprets structured instructions from the host, stores them in DPU
memory #1 as a structured display list, and translates them into pixels in DPU memory #2, pixel
memory. DPU #2 is a simple raster DPU that refreshes the screen from pixel memory. The
translation process is termed repaint. The host computer can draw lines and then “erase” them. This

causes DPU #1 to edit its display list, and then repaint pixel memory accordingly.

CPU DPU #1 DPU #2

(vector) (raster)

interface CRT

CPU e DPU . DPU .
memory update mer;afry me;:;ry refresh

(display (pixel

list) memory)
repaint

Figure 6-13. Raster Refresh Buffer.

The advantage of such a system is that a raster display now has structured commands, such
as lines and characters, and erasure. The display independently handles the repaint process that all
raster drawing requires.

The disadvantage is the cost and complexity of the additional hardware. Also, in the limit
as the update rate approaches the refresh rate, such as in fast animation, one is limited by the speed

of DPU #1.
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6.4 Review Questions

1. A random vector display processor and a raster display processor read data from memory
periodically in order to refresh the display on the screen. Describe the structure of this data
for each display.

2. A picture consists of four lines that make a square on a CRT screen. Diagram and describe
the display memory contents and display processor operation for this picture if the
hardware is:

@)) a random vector refresh display,

2) a black and white raster display.
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Chapter 7. Graphics Systems

During the late 1970’s and early 1980’s, raster graphics technology advanced rapidly and
raster devices quickly replaced vector graphics devices. As a result of rapidly decreasing costs of
computer memory and video technology, raster graphics systems became less expensive than
vector systems. Most importantly, raster devices could economically provide color, which had
become essential for many graphics applications.

The software packages for vector systems were based ong ;graphical segmentsf.; A segment
was the organizational unit for graphics information and provided a logical structure for dynamic
display programming. Using segments was like drawing on a stack of transparent pages held over
the screen. The programmer could draw only on the top page but the stack could be shuffled to
allow drawing on any page. Segments (pages) could be deleted, blinked, and even transformed
individually. All displayable entities were placed in segments by the programmer. All segments
appeared on the screen at once. |

It soon became clear that the segment-based graphics packages that had been used for
vector di{splay systems would not be appropriate for raster displays. Instead, the concept of a

~ window was developed as the logical structure for organizing raster display systems.

7.1 Window Graphics Systems

The advent of workstations and personal computers greatly aided the development of
window graphics systems. The basic wmdow graphics systems in use today are described briefly
in the next sections. The first two systems are kernel based graphlcs systems, meaning the graphics
functions and application must reside within the same computer. The last system described, the X
Window System, is a ’r;etwork-based !siystem, meaning the application and graphics functions can

reside on different computers connected by a network.

Apple Macintosh™ Toolbox
Apple Computer, Inc. developed a comprehensive suite of software for the Macintosh

computer that first shipped in 1984. The software consists of a hundreds of functions that are

Chapter 7. Graphics Systems



7.1 Window Graphics Systems 85

placed in ROM (read-only memory) contained in each Macintosh [1]. The set of functions is called
the “Toolbox.” A Macintosh program makes calls to Toolbox routines that are translated into

system calls that enter the ROM code during execution.

Microsoft Windows™

Very similar to the Macintosh Toolbox, Microsoft Windows [2] was developed to support

window graphics on IBM compatible personal computers. The first version of Windows appeared
shortly after the Macintosh, and it has become the standard window environment for the IBM
compatible world. Windows consists of a user environment that provides operating system
functionality to the computer and contains graphics routines that are linked to programs executing

Windows function calls. The routines support applications programming.

X Window System™

The X Window System [3] was developed jointly by Massachusetts Institute of

Technology’s Project Athena, Digitial Equipment Corporation and other companies starting in
1987. It was designed to support interactive raster graphics on networks of workstations. It has
been adopted as a standard by nearly every workstation manufacturer.

X Windows isgFnetwork-basedg,g meaning programs executing on one workstation calling X
routines can display graphical data and interact with devices on another workstation or several
other workstations. This makes it possible to run a program on a remote computer and interact with
it on your local computer. This is termed a”client-server‘model, where the client (application)
program on a remote computer sends coded commands according to a;;rotocol ’,J or “messages,”
over a network to a graphics server on the local computer. The commands are executed by the
server to produce graphical output and other functions.

The functionality of the X Window System is made available to programmers througﬁ leib!,?
a library containing hundreds of C language routines for various functions. The Xlib routines are
considered low-level functions, meaning they provide basic programming access to the protocol
commands. Several software packages have been developed “on top of”” Xlib routines to provide
high-level functionality, for example, the OSF/Motif™ [4] user and programming environment.
High-level refers to more sophisticated functionality intended for software developer support.

There are some common elements in each of these window systems:
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windows are the fundamental organizational structure for drawing on the screen and

communicating with the user,

events convey information about actions (user inputs, system happenings) to the
program,
drawing primitives

are lines, characters, fill regions, color and pixel operations.

The following sections discuss these common elements.

7.2 Windows

_ Windows are in essence the raster counterpart to segments. They have a similar intent to
segments, to allow a programmer to structure graphical display information in a manner
appropriate for efficient and clear presentation and editing. ‘

Some of the first window systems were implemented as”tile systems; in which the tiles,
usually rectangular areas on the screen, cannot overlap. In other words, the screen is divided into
a number of non-overlapping regions, or tiled windows.

" Window systems relax this restriction and allow the regions to overlap.

Tiles Windows
| Tite | Tite | |= |
|1 2
| Tile | Tile - L L

Figure 7-1. Tiles and Windows.

We can see that tile systems are considerably easier to implement. Tiles are a one-to-one
mapping to screen pixels. Windows are a more difficult problem:

1. Each pixel can “belong” to a number of windows (Figure 7-2).

2. Only complex regions of windows may be visible. For example, the line a-b drawn

in window A must be clipped against window B(Figure 7-3).
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pixel is in all 3
windows

g

u C

Figure 7-2. Overlapping Windows and Pixels.

Figure 7-3. Overlapping Windows and Clipping.

3. There must be means for ordering the windows. The stacking order of the previous
figures, from the “top”, is B, C, A.

Windows are not only an organizational convenience for implementation. They are useful

for efficient graphical communication with a user.

1. A window is a metaphorical means for “looking at the infinite world of data through
a window.” For example, scrolling, panning and zooming through a large picture
or long document by moving the data through the window.

2. Windows are means for presenting many sets of data, or different views of one data
set, to a user, like a stack of papers on a desk. The user can peruse the stack, move
papers around as needed, pick one to edit, place them side-by-side for comparison,
etc.

3, " Dialog window; gfacilitate temporary communication with the user, such as

warnings and data prompts, by re-using precious screen space.
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7.3 Events

Graphics programs are notified of user actions, such as device inputs, and other noteworthy
happenings through messages called events. Events control the execution of interactive programs
and are central elements in all graphics systems. In general, all graphics programs are passive,
waiting for events caused by actions to cause them to react.

At the heart of each graphics system is the event processor that accumulates information
and actions from devices connected to the computer and other sources, and places the data
associated with the event (such as the key typed on the keyboard) at the end of the event queuef;
The typical graphics program contains at least one event loop that continually asks the question “is
there an event for me to process?” In general, there is a function that removes an event from the
‘head of the event queue and returns the data to the caller. For example, an event loop for a GRAFIC

program is shown in Figure 7-4. The function GNextEvent returns four pieces of data: the

for( ;; ) { /* “forever” */
eventId = GNextEvent( &wid, &a, &b, &c );
if( eventId == GKEYPRESS ) {
if( a == *a’ )
/* key ‘a’ has been pressed on keyboard */

}
if( eventId == GUPDATE ) {
/* process window update event */

Figure 7-4. A GRAFIC Event Loop.

window in which the event occurred (wid), and three data associated with the particular event
(a, b, c). In the example, when a key is typed on the keyboard, an event of type KEYPRESS is
returned and the first argument (called a in the figure) will contain the ASCII code of the key.

When running the X Windows version of GRAFIC, GNextEvent will call Xlib’s XNextEvent;

Windows GRAFIC, PeekMessage is used in conjunction with a window “callback” procedure

to accumulate events for GNextEvent. There are typically dozens of event types.
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7.4 Drawing Primitives

Finally, all graphics systems have a set of functions for drawing. As expected, at the heart
of each package are basic functions for drawing lines and characters. Most packages have functions
for other types of primitives, such as arcs, polygons (a closed loop of lines), rectangles, circles and
ellipses, markers (a symbol at a point) and fill regions. Fﬂl reglons are closed areas bounded by
lines (and possibly arcs) into which a color can be “poured.” Some systems provide sophisticated
means for constructing fill regions, such as Boolean combinations (union, difference and
intersection) of rectangles, circles, and other regions.

Drawing primitives and windows are linked through coordinates. The coordinates for lines
are given in window cqgicgﬁates Cartesian [x,y] values that are measured relative to the origin of
a given window. Each window contains its own origin, and it is possible to draw in any window at
any time. In GRAFIC (and all the window systems described previously), the window origin is its
upper left corner and window coordinates extend right and down.

Graphics systems also provide some representation for ’drawing attribute.;i such as color
and 'Icglrawing mode or function. Drawing mode refers to arithmetic and logical operations between
the pixel value to be drawn and the corresponding pixel value in pixel memory. For example, think
of drawing a line as an operation on the set of pixels in pixel memory where the line is to appear.
For each of these pixels, the typical operation is to replace the pixel value in memory with the pixel
value of the line. For example, drawing a red line means putting the pixel value of red into the
pixels in pixel memory where the line is to appear. Now consider other operations than simply

copying the pixel value into pixel memory.

1

I it | o
In GRAFIC, for example a pen mode called GXOR means perform the Boolean exclusive-
AN AN N

N R P e

correspondmg pixel in pixel memory. This is 111ustrated in Fi gure 7 5. The flrst hne drawn extends

from [100,100] to [400,100] in black. The pen mode is changed to GXOR, and a second line is
drawn from [200,100] to [300,100]. For each pixel in the second line, the current color (black) is

XOR’d with the corresponding pixel in pixel memory, in this case, also black. The result of black
XOR black is white, as shown. Graphics packages typically provide a dozen or two such functions
to control the drawing mode.

Drawing attributes are usually maintained in a drawing state of some kind. When a drawing
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GPenColor ( GBLACK );
GMoveTo( 100, 100 ); XOR Example

GLineTo( 400, 100 );
GPenMode ( GXOR ) ;

GMoveTo( 200, 100 );
GLineTo( 300, 100 ); I I

100 200 300 400

Figure 7-5. GRAFIC Calls Using XOR and Resulting Display.

primitive is executed, its appearance is determined by the drawing attributes in the current drawing
state. For example, in GRAFIC, each window has a separate drawing statc that defines the color
and drawing mode for the next line, character or fill region that is created. Funcuons are available
for changing the drawing state, such as GPenColox to set the color, and GPenMode to set the
mode. In the Macintosh T oolbox, the drawing state is called the GrafPort ; in Microsoft Windows,

it is the device context; and in X Windows, it is the graphics context.
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Chapter 8. Interactive Techniques

Recently, due largely to the rapid influx of personal computers in the home and workplace,
considerable attention has been given to' graphzcal user mterfaces/ /as an important aspect of
programs and the key to “ease of use.” The design of a good graphical user interface, or GUI,[ is
both an art and a science. The following sections describe some basic GUI techniques. —

The goals of a successful user interface should be to:

1. provide a natural person-machine interface, where natural means

(a) appropriate and (b) efficient for the application,
2. fully exploit the power of the machine to augment the user’s capabilities,
3. let the machine do the work.
-~ A good GUI should follow and exploit the principle of least astonishment:
X Make the expected happen; make what happens expected.

\

Exploit consistency and user anticipation.

8.1 Pointing and Positioning

An important aspect of any GUI is the capability of pointing to parts of the visual
presentation on the screen before the user, typically through the use of pointing and positioning
devices coordinated with moving graphical entities on the screen. Cursors are one predominant
form of pointing and positioning. A cursor is a graphical symbol, or icon, that moves on the screen
according to user actions. The mouse and pointer symbol is a common example of this today. As
the user moves the mouse with hand movements, a cursor moves on the screen. The user can move
the cursor “near” other graphical entities on the screen and direct the program to perform some
action.

The form of the cursor can be an important source of information to the user. Special

cursors can be used to convey problems or special input requirements as in Figure 8-1. As screen
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position indicators, cursors can take different forms that are appropriate for certain tasks. For
. 4 y ?
positioning error condition ¢

busy E) text marker 1
Figure 8-1. Examples of Special Cursors and Meanings.

example, cross-hair cursors are useful for aligning objects (Figure 8-2).

cursor (X,y)

/ ~— screen or window

\ horizontal line
moves up and down

with y cursor

coordinate.

~

vertical line moves
left and right with x
cursor coordinate.

Figure 8-2. Cross Hair Cursor.

Positioning constraints provide more exact control of cursor motion according to user-
specified options. Constraining the motion of objects connected to the cursor to either horizontal
or vertical components of the cursor position facilitates accurate positioning operations (Figure 8-

3).

“vertical” cursor
constraint ]
N ——— unconstrained
last point N\ “horizontal” constraint

Figure 8-3. Constrained Cursor Motion.

Constraining the cursor location to fixed grid locations, sometimes called “snap to grid,”
means the cursor is moved to the nearest imaginary (or visible) grid location that is computed for

each cursor movement by rounding off the exact position to the nearest grid location (Figure 8-4).
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T

N

Figure 8-4.Cursor Positioning Constrained to a Grid.

8.2 Dragging

Feedback during positioning allows the user to “preview” the appeurance of objects during
re-sizing and moving operations. One of the most useful techniques for providing this feedback is
to move objects with the cursor, called “dragging.” Dragging means drawing and crasing an object
as its position is changed with the cursor position.

With segment-based vector display systems, implementing dragging is relatively simple.
The object to be dragged is placed in its own segment, distinct from segments displaying other data
that will not change during dragging. As the cursor moves, the segment of the dragged object is
continually erased and re-created, thereby creating the visual effect to the user of an object moving
across the screen. In actuality, the object is not moving, it is an effect created by sequentially
erasing the object drawn at the old position and drawing the object at a new position.

Although the principle is the same, implementing dragging with raster graphics systems
requires special operations because there is a problem with the “erasing” steps. At first thought,
erasing can be implemented easily by drawing over the previously drawn object in the background
color (typically white).

Considering the object to be a straight line, the visual appearance of dragging is illustrated
in Figure 8-5. This effect is called th{é rubber-band ﬁne. A first algorithm for the rubber-band line

with a raster graphics package might have the following steps:

1. draw the line the from the start point to the old end point,

2 get the new cursor location, called the new end point,

3 redraw the old line, from start to old end point, in white to erase it,
4. assign the new end point coordinates to the old end point,

5 loop back to step 1.

The flaw in this approach is step 3, erasing the old line by drawing it in the background
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cursor position

old end point x—/p '/'

old line — / g

/ \; new end point

previous line /
\ , \s new line
‘\ start point

Figure 8-5. Dragging A Rubber-Band Line with the Cursor.

color, white. This operation replaces all pixels along the line with white, even those that belong to
other lines passing through these pixels. For example, in Figure 8-6 we see the effect of erasing one
line that crosses others, the classic “pixel in common” problem. As the dragging continues, the

screen can become entirely erased.

Before After Erasing Line AB
Text ffected Too Text ) Affected Too
B oB

Figure 8-6.lllustration of the Raster Erasing Problem.

line is redrawn. This will produce an annoying flash that will irritate the user. A better approach
utilizes the drawing function exclusive-or (XOR) or the pen mode “GXOR” as it is called in

GRAFIC. The XOR operation is a well known Boolean logic function whose binary logic table is
shown in Figure 8-7. An important property of the XOR operator is that XOR’ing the same source

A value
0 1
0 0 1
B value . . 0 Results of A XOR B

Figure 8-7. XOR Truth Table.
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value twice in a row to a destination value restores the original destination value. This is the key to
dragging in raster graphics. Using a pen mode of GXOR, drawing the same object in the same color
at the same location twice restores the original pixels in pixel memory.

Notice that for the pixel values of black and white, this works “neatly” as illustrated in
Figure 8-8. In color, where pixel values can be arbitrary integers in general, the operation is still

valid but produces arbitrary colors. Therefore, exclusive-or is useful only during dragging. After

dragging is finished, the entire image must be re-drawn in GCOPY pen mode to restore the correct

image.

For white = 0 and black = 1:

source destination source xor destination
black(1) white(0) black(1)
black(1) black(1) white(0)

Figure 8-8. XOR Operations on a Black and White Display.

With this information, an algorithm for the rubber-band line will have the following steps:
draw the line the from the start point to the old end point in GXOR mode,

get the new cursor location, called the new end point,

redraw the old line, from start to old end point, in GXOR mode to erase it,

assign the new end point coordinates to the old end point,

A A

loop back to step 1.

Keep in mind that the XOR operation works on the pixel values as numbers. For example,
consider the case of a mapped display, where pixel values are color table indices. Suppose that the
color white is the pixel value 5 and black is 6. Drawing a black line over a white area means the
source pixel values are black, or 6, and the destination pixel values are white, or 5. In GXOR pen
mode, drawing the line means that the system XOR’s each source and destination pixel value for

each pixel location along the line. In this case, 5 XOR 6 is 3 (5 is 1015, 6 is 110,, 101, XOR 110,
=011, or 3 ), so the resulting pixel values along the line are 3. But what color is pixel value 3? For

a mapped display, it is the color in color table location 3, which may or may not be a color set by
you! Drawing the same line in black a second time means that the pixel values will be 6 XOR 3,

or 5, which restores the color white, as expected.
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Figure 8-9 shows an implementation of rubber-band line dragging using GRAFIC routines.

The routine Drag is called from the main event loop when dragging should begin.

void Drag( int hO, int vO0 )

{
WID wid;
int event, c, moved, oldh, oldv, newh, newv;
moved = 0;

oldh = hO;

oldv = vO0;
GPenMode ( GXOR ) ;
do {

event = GNextEvent ( &wid, &newh, &newv, &cC );
if ( event == GMOUSEMOTION ) {
if( moved != 0 ) {
/* redraw (erase) old XOR line */
GMoveTo( hO, vO0 );
GLineTo( oldh, oldv ):;

if( newh != oldh || newv != oldv || moved != 0 ) {
/* draw new XOR line */
GMoveTo( h0, v0 );
GLineTo( newh, newv ) ;
oldh newh;
oldv = newv;
moved = 1;

}
} while( event != GBUTTONUP ) ;
/* redraw the final line in GCOPY mode for correct picture */
/* it is also necessary to redraw the entire picture */
GPenMode ( GCOPY ) ;
GMoveTo( h0, v0 );
GLineTo( newh, newv );

Figure 8-9. GRAFIC Drag Code Example.

8.3 Picking

Picking is an important graphical input process where the user identifies an object drawn
on the screen using an input action. Typically, this is accomplished with a positioning device, such
as a mouse, with which the user causes a cursor on the screen to move near an object of interest
and then indicates the action of picking with another input, such as depressing a mouse button or

typing a key.

Chapter 8. Interactive Techniques



8.3 Picking 97

The program should acknowledge a successful pick (and a failed pick), by some response.
The form of response is application dependent. Examples of good responses are:

1. Highlighting and unhighlighting the selected object(s). Highlighting means to

S

graphicaﬁyrdistinguigsh selected objects from others.

2. No response, when the reason is clear. For example, clicking the mouse button
when the cursor is nearnothmg;loes not require a message saying “you picked
nothing.”

Examples of bad responses are:

1. Annoying, persistent or unclear actions, such as beeps, bells, blinking messages.

2. No response, when the reason is unclear. For example, not allowing an object to be
picked may need some response.

1 v
ambiguous picks, when

Picking is often (nearly always) made difficult by problems of{
more than one object may be identified with the picking action. There are many alternatives to
resolving ambiguous picks, depending on the application context and the screen context.

Application context

means the understanding in the user's mind based on the knowledge
required to get this far.

Screen context

means the visible graphical environment the user sees at the time.
In general, you (the developer) must have a user model in mind when designing the user

interface.

Examine some basic approaches to picking objects.

8.3.1 Picking Text

Picking text is usually based on a “characteristic location,” such as the lower left corner of

the first character or inside the imaginary rectangle the bounds all the text.

8.3.2 Picking Lines

There are several different approaches to picking lines.
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lower-left A B G\D bounding rectangle
corner
EFG

. _/

Figure 8-10. Characteristic Locations for Picking Text.

™ center @)

End points:

The Euclidean distance produces a circular picking region. Alternatively, the absolute
value computations create a rectangular picking region that is nearly indistinguishable to the user

from the circular, but are computationally faster.

(Xc - Xi) % ( Yc - Yi )< d?

| Xc-Xi|<dAND|Yc-Yi|<d

Figure 8-11. Picking Regions for Euclidean and Absolute Value Tests.

Anywhere along a line:

The problem is picking a bounded line (segment) with endpoints. We must combine the
mathematical procedure for computing the distance to the unbounded line with the algorithmic
process of limiting the picking region to the bounded portion of the line.

The distance from a point to an unbounded line is classically computed as,

4= [Ax+By+C

NAZ +B2

where the line equation is Ax + By + C=0, and A, B, and C are found from the line end points by
solving the simultaneous equations:

Ax;+By;+C =0

Ax,+By,+C =0

Note that this involves dealing with a number of special conditions (A=0 and B=0, for example).
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xy] (x2,¥2)

N\

(X1,¥1)
Figure 8-12. Distance from Point to a Line.

Another method, based on a vector solution that will be discussed later, is:

T Ax = —
|Ax1 _ Ayl l where X = Xy =Xy
d="r2l 2

Ay = y5,-Y;
JAX® + Ay?

1. = X=X

y=y-y

Caution: the denominator above can be 0 when the line is actually a point.

This test alone, however, has a picking region that extends infinitely along the line:

Figure 8-13. Picking Region for an Unbounded Line.

To bound the picking region, perform tests according to the Boolean expression:

picking region = “inside the smallest rectangle surrounding the line and its endpoints”

AND

“within distance d of the unbounded line”

This is shown visually in Figure 8-14.
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Figure 8-14. Picking Regions for a Bounded Line.

8.3.3 Picking Circles

Picking a circle means that the cursor is within a given distance of either side of the circle,

resulting in the annular picking region illustrated in Figure 8-15. One approach would be to

Figure 8-15. Picking Region for a Circle of Radius R and center [xc,yc].

compute the distance from the cursor location [x,y] to the circle center [xc,yc] and compare this to
the boundary radii of the two circles bounding the picking region, R+d and R-d. This approach is
adequate for circles, but does not generalize for other conics (curves of degree two) such as
ellipses.

A more general approach is based on the properties of conic equations, i.e. in this case the
equation of a circle: x% + y2 -R? = 0. Notice that if the point [x,y] is inside the circle then

X2+ y2- R? <0 and if the point [X,y] is outside the circle then X2 + y2~ R?>0.To simplify and
speed the computations, first transform the cursor location into the local coordinate system with its

origin at the center of the circle. This transformation is simply [x,y] - [xc,yc]. We now test the
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location of this point with respect to the picking region, which can be expressed logically as:

“inside the outer circle (radius R+d) AND outside the inner circle (radius R-d),”

or more conveniently,

“inside the outer circle (radius R+d) AND NOT inside the inner circle (radius R-d).”

The second form simplifies the logic to one routine “Boolean InsideCircle( X, y, radius ).”

8.3.4 Picking Composite Objects

A composite object is an object that consists of a collection of simpler objects, such as lines,
circles, or other entities. Picking composite objects is application dependent, meaning the user may
or may not have characteristic locations for objects that are natural picking points or regions.

Vertices are often convenient, except for curved objects.

Curves have
no vertices!

Figure 8-16. Vertex Picking Examples.

Picking an object that is composed of lines means picking any of its lines.

Figure 8-17. Picking an Object Composed of Lines.

Picking an object by picking near its centroid, i.e., the geometric center of an object, can
sometimes be useful (but not often).

A bounding rectangle is the most often used picking region. This is visually understandable
but also can be a gross over-approximation to the “inside” of an object.

Picking by number or name should be used only when numbers or names are inherent to
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?

+ '___—/__

Figure 8-18. Centroids of Objects.

picking region much
larger than object

Figure 8-19. Bounding Rectangles of Objects.

the application, i.e. objects have names known by the user anyway. Even in this case, graphical

picking should be permitted too.

Fred
12

Figure 8-20. Showing Object Names.

Picking inside objects is a sophisticated approach to picking that is useful for simple

objects, such as rectangles, but is very complicated for other objects, especially those with curves.

A X

Figure 8-21. Interiors of Simple and Complex Objects.

Inside/outside tests, or point containment tests, will be discussed in a later chapter.
Picking inside a selection region is useful for selecting all objects in an area, usually a
rectangle, on the screen.

This requires special tests for the intersection of the selection region with the “object
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start with

button down \ —7
here
“drag” mouse

\
O L with button down

(A
__/

TEXT

\ s release button

here
Figure 8-22. Picking Objects Inside a Selection Region.

region,” either the bounding box, individual lines, or vertices.

8.3.5 Interaction Paradigms

Verb - Noun Paradigm
The interaction model in most early interactive graphics systems can be characterized as

verb-noun paradigm because the user first selected the action (verb) and then was prompted for the
entities on which to act (nouns).
Nouns are selected objects, such as text characters, graphical objects, markers, etc.,
whatever objects are pertinent to the application.

Verbs are commands that operate on objects.

This command structure approach usually required hierarchical menus and numerous
prompts to request picks from the user. Research in user interfaces showed that such systems are
very difficult to learn, difficult to remember and require an excessive number of user inputs.

One of the main drawbacks of the verb-noun paradigm is that the user (and program) is
continually entering a mode, meaning a program state requiring special user inputs to complete.
Modes usually require additional user inputs (e.g. enter mode, exit mode) and tend to challenge
users to recall where they are and what is required to exit and complete the mode. In addition, verb-

noun systems must handle many error conditions when the user picks invalid data items.

Noun-Verb Paradigm
Recent systems, first popularized by the Apple Macintosh graphical user interface, are

based on a noun-verb paradigm. At first glance, the noun-verb paradigm appears to be a simple
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reversal of picks and commands, but in practice it greatly simplifies user interfaces. The user
selects (and un-selects) objects (the nouns), and then executes the desired command (verb).

Noun-verb systems require that the program and user maintain a selection, meaning a set
of selected objects. The selection is M to visually distinguish selected objects from un-
selected objects. For example, selected;;;;;sﬂa;%/n inverted (or outlined by a darkened box, etc.),
or a rectangle has tabs called handles drawn at its corners.

Knowing the selection before executing the command allows the program to:

1. enable and disable menu items and change their text to be appropriate for the

selected objects and more informative to the user,
2. change the action performed to depend upon the selected objects.
For example, a “delete” command can be disabled (grayed and not allowed to be executed

by the user) when no object is selected, different commands can be enabled when different

numbers or types of objects are selected, and so on.

8.4 Review Questions

1. Summarize the “verb-noun” and “noun-verb” paradigms for graphical user interfaces. Give
an example of how a “delete object” command could be changed to follow the verb-noun
paradigm.

2. Explain in detail how the GRAFIC pen mode “GXOR” allows objects to be “dragged”
across the screen without erasing the underlying picture. Give “before and after” examples

with pixel values for a black and white display, and a mapped color display.
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Chapter 9. Data Structures for Interactive
Graphics

As you have probably seen to this point, graphics programs are always operating on data.
In a non-graphical program, there is only one use for the data: analysis. By incorporating

interactive graphics, data is now also used for interaction and display. Accordingly, we have two

“types” or categories of data:
1. Problem data: for analysis (e.g., motion analysis of a mechanical device)
2. Graphical data: for display (e.g., creating and displaying the device)
In general, these types of data are not always distinct, i.e. there is overlap w here data is used

for both (Figure 9-1):

Data /Geometry

graphic Display

Analysis

Figure 9-1. Problem and Graphical Data.

Examples:
Graphical Data Problem Data
Geometry Geometry
Visual Properties (color) Physical Properties (density)

Graphics Package Information
(windows, etc.)
The following development of data structures combines methods for representation of

objects with the needs for interactive graphical interaction.
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9.1 Basic Data Storage Methods

First examine the data needed to create one object, one “entity” at a time. We will use points
and straight lines as our entities, but the ideas can be generalized to other geometric and non-
geometric forms. Keep in mind that the controlling program is interacting with a user whose
commands activate and direct the actual storage and manipulation of the data, in this case lines.

As the object is drawn on the screen, which is purely a graphical operation of the program,
it is also necessary to store the lines as data for later reference, either for analysis (“What is the

length of the line?”), or for editing operations (“Delete this line”).

9.1.1 Sequential lists

The most direct method of storing data is a compacted sequential list, or CSL, as shown in

the following diagram.

datall

start » 0 1st entity

free 1 2nd entity
\A 2| unused (“free”)

MAX-1| unused (“free”)

Figure 9-2. Compacted Sequential List Storage.

The variables start and free are pointers that indicate locations in the data array(s) that
hold the first used entity and first free cell, respectively. In a CSL, start always points to the first
cell, index 0, and is actually unneeded. In a CSL, entities are first, followed by free cells, in two
contiguous blocks of cells.

The entities can be stored in several array(s) indexed by the same variable. For example, if
one were storing a line drawing as a sequence of end points marked by pen codes, there would be

three arrays (see Figure 9-3).
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x[] vyl pen|] ( \
x1 yl MOVE X2,y2 X3,y3
x2 y2 DRAW

free\A X3 ¥3 DRAW
xL,yl

Figure 9-3. Points and Pen Codes Data Structure.

The i® entity consistsof x[1] ,y[i] andpen[i].

In structured languages like C, C++ and Java, entities are more conveniently represented
by structures or classes. For the example above, we could define the C data type Entity as a
structure as follows.

typedef struct {

int x, y;

int pen; /* constant meaning MOVE or DRAW */
} Entity;

If the size of the array is known at compile time, the data storage can be allocated statically
as a single array of structures, data:

Entity data[MAX];

If the necessary size must be computed or otherwise found at run time, the data array can

be allocated dynamically:

In C: Entity* data
In C++: Entity* data

calloc( MAX, sizeof (Entity) );
new Entity[MAX];

The x value of the i entity is referenced as data[i] .x.

Consider the four basic operations on our data structure: initialization, appending an entity,
deleting an entity, and inserting an entity.
1. Initialization:

Set £ree to point to the first cell.
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2. Appending an entity:

The general process is:

1. obtain a free cell,
2. append the cell to the last entity of the object,
3. fill the cell with the entity data.

For our points example, assume that point newx , newy , newpen is to be appended to the

object. Figure 9-4 shows a code fragment for performing this operation.

/* step 1 (obtain free cell) */
new = free;
if( new >= MAX ) Error (“OUT OF SPACE”) ;

/* step 2 (append cell to last entity, remove from free) */
free = free + 1;

/* step 3 (fill the cell with the entity data) */
datalnew] .x = newx;
data[new] .y = newy;
data[new] .pen = newpen;

Figure 9-4. Appending an Entity to a CSL.

Note that for a CSL the statement free = free + 1 appends the entity to the object
and removes the cell from free storage in one step.

3. Deleting an entity.

If the cell is the last cell in the object, the process is simply decrementing the £ree pointer

as illustrated in Figure 9-5. o

Entity datal] /

x1,y1,”move”

x2,y2,’draw”

x3,y3,’draw”

x1,yl

/

Figure 9-5. Deleting the Last Cell in a CSL.

If, however, the cell is not the last in the object, then we must compact the list to maintain

the proper structure of the CSL for subsequent operations. For example, to delete the it point, we
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must copy the cells from i+1 to free-1 “up” (to lower indices), or “shuffle up.” This is

necessary to fill the gap and to insure that all free cells are in a contiguous block at the end of the

data array(s).

In our example, deleting the ond point would result in the structure in Figure 9-6.

Entity datal] (
x1,y1,”move” x3,y3

x3,y3,”draw”

free—p

x1l,yl

Figure 9-6. Deleting an Entity (Point).

The loop to perform the compaction is illustrated in Figure 9-7.

for( j =1+ 1; j <= free - 1; j++ )
/* the next statement can assign a whole struct in C or C++, or
/* may need several assignments if separate arrays are used */
datal[j-1]1 = dataljl;
free = free - 1;
Figure 9-7. Compaction Loop.

4, Inserting an entity:

\

N _

Inserting an entity between existing entities is like the reverse of the delete operation. To

create a free cell before a given entity, it is necessary to copy the following entities down (to higher

indices), or “shuffle-down.” To insert a point before the it point in our structure, we must move

the entities from i through free-1 down (assuming there is a free cell), then fill the 1™ cell with

the new entity data.

The loop to perform expansion is illustrated in Figure 9-8.

for( j = free - 1; j <=1i; j =3 - 1)
datal[j+1] = dataljl;
free = free + 1;
Figure 9-8. Expansion Loop.

There is an important point to make regarding data structures in interactive graphics
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}

applications. It is essential to remember that éhanging the data does not change the displayj That
is, the program must maintain the integrity of the screen representation of the internal data the user
has created by redrawing when necessary. Often during the development of an interactive
graphical program, the developer carefully and correctly codes the change in a data structure in
response to a user command, but mistakenly forgets to redraw the display to show the change to
the user. For example, the user issues a “delete line” command, but the line stays on the screen.
The user then tries to pick the line, but the program fails to find it because it is no longer in the data
structure. Further editing finally causes a screen redraw, and the user is surprised to see the deleted
line gone, finally.

Conversely, another common error is the to change the display to the user, but failure to
change the data. For example, the user issues a “delete line” command, and the line disappears
ffom the display. After another command causes a re-draw of the screen, the pesky line magically

reappears because the re-draw traverses the data structure, displaying each entity.

9.1.2 Linked Lists

(1 (7
In the CSL storage method, adjacency between array positions was used to determine

which points were connected to form lines, and in general how to find the previous and next entities
in the data. Thus, connectivity is implicit in a CSL.

Another method for storing data is a linked list. It appears similar to sequential storage,
except the next entity need not follow the current one in storage. In other words, the data is linked
through explicit pointers stored with each entity, as shown in Figure 9-9.

Start points to the first entity (not necessarily the first cell in the data) of the “entity list”
that defines the object. Free points to the first cell of the “free cell list.” Lists are terminated by a
NULL pointer, a unique pointer value.

The display on the screen is the same, only the internal storage method has changed.

An artray of integers can be added to hold the next pointers for the multiple array method.
With structures, an “int next;” field is added to the definition of an entity. In the next section,
we will use a C poi;lief Vériavt;léﬂfor next.

Itis usually easier to think of and draw a linked list as a graph of boxes connected by arrows

as shown in Figure 9-10.
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Entity datal]

0| unused (“free”)

start <
><: 1st entity
free 1

x1,yl,penl

2| unused (“free”) _ 4 | 1st entity’s next

pointer

MAX 2nd enti 2nd entity’s next
211 2emlt}é pointer is NULL, ({ ~)
X Y ,Pen for “end Of liSt.”

Figure 9-9. Linked List Storage.

start —=|x1,yl,penl —|x2,y2,pen2 74

free . 74

Figure 9-10. Diagram Form of Linked List.

The boxes are entities or cells, and the arrows are the links. The arrow with a line is a NULL
pointer.

Now consider the basic operations as before, using the same example as before.
1. Initialization:

Initialization now means: set start to NULL and link all cells into the free list.

starty
free

datal]

0] unused (“free”)

[u—

unused (“free”)

2| unused (“free”)

MAX

TART T

Figure 9-11. Initialization of a Linked List Structure.
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An initialization loop is illustrated in Figure 9-12.

start = NULL;

for( i = 0; i < MAX-1; i++ )
data[i] .next = 1 + 1;

data[MAX-1] .next = NULL;

free = 0;

Figure 9-12. Linked List Initialization.

2. Appending an entity:

The three steps are the same: (1) get a free cell, (2) append the cell to the object, (3) fill the

cell with the entity data. We now have an end condition to consider: when start is NULL,

there is no last entity on which to append. Figure 9-13 illustrates one approach to appending

to a linked-list.

sl

/* step 1: get a free cell */ [ [ 7

new = free; .
if( new == NULL ) Error(“OUT OF SPACE” );
free = datalfreel .next;
/* step 2: find the last entity in the entity list */
if( start == NULL ) {
start = new;
last = NULL;
} else {
last = start;
while( datal[last] .next != NULL )
last = datallast] .next;
}
if( last .NE. NULL ) datal[last].next = new
/* step 3: */ =)
data[new] .x = newx;
data[new] .y = newy;
datal[new] .pen = newpen;
data[new] .next = NULL; /* don’t forget to init. next!

Figure 9-13. Appending An Entity to a Linked List.

It may be more convenient and efficient to maintain a variable last that always points to

the end of the list.

3. Deleting an entity:

Deletion shows the real advantage of linked lists for applications requiring dynamic data

structures, i.e. data structures that are created, deleted, and edited interactively. Assume we have

picked the entity to be deleted from the CSL and recorded a pointer to it in the variable here.
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prev here

ENTITY
C

ENTITY)|

Figure 9-14. Linked List Deletion.

The pointer prev indicates the previous entity, i.e., the entity that points to here. Note
that the first entity will not have a prev entity, so we handle this specially as another end

condition. Given start, we can find prev as follows.

if( here == START )
prev = NULL;
else {
prev = start;
while( datalprev] .next != here )

prev = datal[prev] .next;

Figure 9-15. Finding the prev pointer.

Now we are set to unlink the entity and return it to the free list.

/* first unlink the entity: */
if( prev == NULL )
start = datalhere] .next;
else
datalprev] .next = data[here] .next;
/* return the freed cell to the front of the free list */
datalhere] .next = free;
free = here;

Figure 9-16. Unlinking the entity referenced by here.

The free list is generally unordered, so returning the cell to the front is the easiest method.

4. Inserting an entity:

Inserting an entity is similar to appending one, so much so in fact that they can be combined
without too much difficulty. Assume that we have already obtained a free cell and stored the data
in the entity pointed to by new.

We use prev==NULL to mean at the front. The procedure can be coded as shown in Figure

9-18:
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new
prev entity]
l new
entity entity
M A B >

Figure 9-17. Inserting a new entity.

/* link the entity into the object after the entity ‘prev’ */
if( prev == NULL ) {
data[new] .next = start;
start = new;
} else {
data[new] .next = datalprev] .next;
data([prev] .next = new;

Figure 9-18. Code to insert a new entity.

9.1.3 Linked Lists with C/C++ Pointers

Instead of integer pointers, it is more efficient and helps modularity to use C/C++ pointer

variables to represent the start and next pointers in the Entity data. In this case, the Entity

declaration would be:

typedef struct entity {

int X, Yi

int pen;

Entity* next; /* pointer to next Entity */
} Entity;

Entity* start; /* start pointer */
Entity* free; /* free pointer */

(The line “Entity* next” will not compile as shown, but is written this way for easier reading.)

In the next figures, the previous code fragments are re-written to use the next pointer.

Chapter 9. Data Structures for Interactive Graphics



9.1 Basic Data Storage Methods 115

Figure 9-19 shows initialization using pointers, Figure 9-20 shows appending an entity, deleting_

start = NULL; /* NULL is usually 0 for C/C++ pointers */
for( i = 0; i < MAX-1; i++ )
datal[i] .next = &datali + 1];
data[MAX-1] .next = NULL;
free = NULL;
Figure 9-19. Linked List Initialization Using Pointers.

/* step 1: get a free cell */
Entity *last, *new;
new = free;
if( new == NULL ) Error(“OUT OF SPACE” );
free = free->next;
/* step 2: find the last entity in the entity list */
if( start == NULL ) {
start = new;
last = NULL;
} else {
last = start;
while( last->next != NULL )
last = last->next;
}
if( last .NE. NULL ) last->next = new
/* step 3: */
new->xX = newx;
new->y = newy;
new->pen = newpen;
new->next = NULL; /* don’t forget to init. next! */

Figure 9-20. Appending An Entity to a Linked List Using Pointers.

an entity using pointers is shown in Figure 9-21 and inserting an entity is shown in Figure

if( here == START )
prev = NULL;
else {
prev = start;
while( prev->next != here )

prev = prev->next;

}
/* first unlink the entity: */

if ( prev == NULL )
start = here->next;
else
prev->next = here->next;
/* return the freed cell to the front of the free list */
here->next = free;
free = here;

Figure 9-21. Finding prev And Unlinking An Entity Using Pointers.
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9-22.

/* link the entity into the object after the entity ‘prev’ */
if( prev == NULL ) {

new->next = start;
start = new;
} else {

new->next = prev->next;
prev->next = new;

Figure 9-22. Inserting a New Entity Using Pointers.

9.1.4 Using Compacted Sequential Lists and Linked Lists

Linked lists require more storage than CSL’s. CSL’s, however, requirc the movement of
entities for insertion and deletion. If the entities consist of much data, and/or if there are large
numbers of entities, CSL’s can be slow. Also, in more complex data structures (as will be discussed
next) where entities may be pointed to (referenced) by other entities, moving an entity requires that

its reference(s) be updated accordingly. This can be clumsy, so linked lists would be preferred.

9.2 Storing Multiple Objects

Many applications operate on more than one object. This requires that a number of objects
be available to construct a scene. Objects are “groups of entities” created by the user.

Now we must maintain groups of objects, or groups of groups of entities. Consider our
basic storage techniques for representing groups of entities. We define the structure Object to
contain a start and end pointer:

typedef struct {

int start; /* Entity* start for C/C++ pointers */
int end; /* Entity* end for C/C++ pointers */
} Object;

Object objects[MAXOBJ] ;

Compacted Sequential List:
A second data structure, the object table, itself a CSL, contains pointers to the start and
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object table: Entity data: csl
Object objects|[] Entity datall
object 1 Sé ";la&-' t\ —>
object 2 -
freeobj —»
MAXOBJ MAXENTITY «—— free

Figure 9-23. Object Table Using A CSL for Entity Data..

end of each object in the Entity data. For a linked list Entity data structure, the object table needs

only the start pointer, and can appear as shown in Figure 9-24. All that is needed is the pointer

object table: entity storage: LL

entityl[]

object1 | start———> B

freeobj —» \

MAXOBJ ?,

Figure 9-24. Object Table Using Linked Lists for Entity Data.

to the first entity (head) of a list. The object table is simply a CSL array of list head pointers.
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9.3 Instancing with Multiple Objects

It is likely that what have been called objects would be used as basic definitions (or building
blocks) to create a given scene. There may be two separate programs or two modes in one program,
one to create the objects and another to create the scene given the object definitions.

It is wasteful and usually undesirable to duplicate the list of entities (no matter how they
are stored) defining an object every time it is added to the scene. Instead, add another level of data
to define the scene in terms of instances of the previously defined basic definitions. An instance is
“a reference to a pre-defined object varying in position, size, orientation and attributes.”

Consider the objects and scene shown in Figure 9-25. In addition to the object table and

SV

The Scene:

Basic Objects:

/\ =k
l 1
” “triangle” K /

Figure 9-25. Instances of Basic Objects in a Scene.

“box

entity data, another data structure is needed to represent the instances of objects in the scene, an
instance table, which stores data for each instance. For this, we could define a structure and type
called Instance:

typedef struct {

int object; /* pointer to basic object */
float tx, ty; /* the translation */

float SX, Sy; /* the scale factors */

TPixel color; /* the color of the instance */

/* etc. */
} Instance;
Instance instances[MAXINSTANCE] ;
The instance table for the scene in Figure 9-25 is illustrated in Figure 9-26. The instance

table contains a reference to the basic object, i.e., a pointer to the object table or a string that is the
name of the object that can be matched with the name stored in the object table. An integer array

index for object is shown above, but a C/C++ pointer could be used as well as illustrated in
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previous sections. The instance table also contains attributes for each instance, which can be any
geometric, visual or other properties that modify the appearance, location, scale, rotation, etc., of
one instance of an object from another instance.

Each instance is a “transformed copy” of a basic object. One instance of a basic object has
the same basic definition as another, i.e., each instance of a box contains the same entities (lines).
Each instance, however, has a different location, size, color, etc. Often. the location, size and
orientation of an instance is represented in a transformation matrix using the basic transformations

of translation, scaling and rotation, respectively.

instance table: Instance instances[MAXINSTANCE:]

0| “box”,txl,tyl,sx1,syl,colorl

csk

1 “box”,tx2,ty2,sx2,sy2,color2

2 “box”,tx3,ty3,sx3,sy3,color3

3| “triangle” tx4,ty4,sx4,sy4,color4

object table: Object objectsfMAXOBJ] Entity datalMAX]:
“hox”, start —] > X,y,pen

\

- “triangle”, start __|

Figure 9-26. Instance Data Structures.

The parameters in the instance table modify the appearance of the basic object when this
instance is drawn. The object is transformed geometrically and visually as it is drawn. For this
example, the instance drawing loop is sketched in Figure 9-27.

The coordinates are transformed by the instance transformation representing the location, size and
orientation, and other visual properties can sometimes be implemented through simple graphics
package calls. The instance table can be represented using a CSL or linked list structure, although
the CSL is adequate for this example.

Picking objects on the screen means picking the instance of a basic object, which in turn
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for( i = 0; i < #instances; 1 =1i + 1 ) {
GPenColor( instances[i].color );
BuildTransform([M],instances[i].tx, instances[i].ty,
instances[i].sx[i],'instances[i].sy ) ;

for( each point ‘'3j’ of object[i] ) {
Transform (datal[j].x,dataljl.y) by [M] into (x,¥y):;
if( datal[j].pen[j] == MOVE )

GMoveTo( X%, ¥y );
else
GLineTo( %, v );

Figure 9-27. An Example Loop to Draw Instances.

means picking a transformed copy of a basic object. Thus, the cursor coordinates must be
compared to the transformed coordinates of each particular instance of a basic object. Another
approach that is more computationally efficient is to transform the screen coordinates of the cursor
into “basic definition coordinates” of each instance and then to compare these coordinates to the
basic object coordinates. This involves multiplying the cursor coordinates by the inverse of the

instance transformation of the object in question.

9.4 Hierarchical Instancing

To this point there is only one “level” of data. No instance is related in any way to another;
each is simply “in” the scene. This may not be sufficient. For example, to reposition the “house”
in the previous scene each entity must be moved individually. The present data structure has no
concept of “house.”

Another example is an airplane, with engines connected to wings connected to a fuselage.
To properly represent and manipulate this data requires a hierarchical scene definition, or an
assembly.

Extend the previous instance data structure with relational information, four pointers called
prev (for previous), next, parent and child, which point to other instances in the instance
table, which in turn point to four other instances. A graphical depiction of this structure is shown
in Figure 9-28 where pointers are shown as horizontal and vertical arrows. Each box is an instance
data “node” that contains the basic object reference and the geometric attributes, probably as a

transformation matrix.
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Data Node
4 parent
prev Ptr tc& Data | ¢
-t .
Transform

* child

Figure 9-28. Graphical Depiction of Hierarchical Relationships between Entities.

In this representation, special significance is given to the parent and child pointers. They

represent a hierarchical relationship between instances that relates the relative position, size and

orientation of each child to its parent. The prev and next pointers are a doubly-linked list of children
of a parent that has no such geometric significancelinked list storage is required now. Figure 9-29

is an example of how an airplane could be modeled with such a structure.

Fuselage
____________ l_ —_——— —— — — -
v I 1 |
Left < Right
4“1 Wing —»  Wing —<>
- _LT_—Q_L L_I ______ le Ik i N

Outboard Inboard Outboard | Inboard
Engine Engine I

Engine Engine
Y1 Left Left g Right [~ Right N

Figure 9-29. Airplane Example of Hierarchical Data Structure.
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What is the “transform” in the data node? There are two possibilities: absolute (global) or
relative (local). An absolute transform maps the data from local coordinates to world coordinates.
Using absolute transforms, when the transform of any node is changed, all children must be
changed appropriately. This is awkward, and somewhat defeats the hierarchic nature of the
representation.

A relative transformation maps the child coordinates to its parent’s coordinates. That is,

each child is transformed relative to its untransformed parent. This “localizes” the transforms and

makes the representation significantly more flexible. It also requires us to accumulate all
transformations, parent to child, to “know” the absolute transform of any given child. In the
example, the location, size and orientation of a wing that is defined in its own convenient
coordinate system is defined by the location, size and orientation of the fuselage to which it is
aftached (i.e., its parent). Therefore, when traversing this hierarchical data structure, for example
for drawing, it must be understood that transforming a node (data and associated transformation)
in the tree also transforms all of its children. In other words, “move the plane, and everything
connected to the plane moves too.”

This hierarchical data structure is greatly aided by transformation matrices. For example, a
division of a company has many designers working long hours developing the data for a wing. The
designers naturally adopt a convenient coordinate reference frame in which to express the wing
data, which we can consider for now as a list of points and pen codes. Similarly, another division
of the company has developed the fuselage data and another the engine data, likewise selecting
convenient reference frames (different than the others). Now, it is time to develop a model of the
airplane with two identical wings (mirror images of each other) connected to the fuselage, each
wing with two identical engines.

It would be unreasonable (and unnecessary) to ask one division to recompute their data in
the reference frame of the other. Instead, we need to relate the reference frames, and use instance
transformations to model the airplane structure as a hierarchy.

The wing data, W, defined in a wing reference frame (coordinate system), is first positioned

relative to a fuselage, F, defined in its reference frame, by a transformation Myy/g. Similarly, an
engine, E, defined in an engine coordinate frame, is positioned relative to the wing by Mg/w.

The coordinates of the wing expressed in the fuselage coordinate system Wy, are:
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Wg =W * My/r (W is the wing data in the wing coordinate system)

The coordinates of the engine expressed in the wing coordinate system Eyy are:

Ew =E * Mg/w
And now the engine can be expressed in the fuselage system as Eg:
Ep=Ew + Myyp= (E* Mgy ) * Myr

Notice that Egp=E * (Mg * My )or E* Mgg

where
Mg = Mgw * Myp.

This shows that as we “descend” from parent to child in the hierarchy, we can concatenate
matrices to accumulate the net effect. This concatenation process continues as we further descend
the structure. Consider, however, the transformations of the children of one parent, such as the
fuselage. Transformations of one child do not affect transformations of other children with the
same parent.

Consider the example illustrated in Figure 9-30. To compute the transformation relating the

outboard engine left to the airplane, Mgy 4, We must pre-concatenate the transformations of each

parent, from airplane to outboard engine left.

Mogra = Mogr, * MLy * Mg * My

9.5 The Current Transformation Matrix

An efficient method for maintaining the transformations while traversing a hierarchical
1"
data structure is to use a“current transformation matrix, called CTM. The CTM holds the

accumulated global transformations for the current node and all its parents.

1

Whe descending}the data structure, parent to child, transformations are PRE-concatenated
with the CTM, i.e. CTM = M;q4 * CTM (for row vector coordinates). The child node is then
drawn with the current CTM: P'=P * CTM.

However, examine the CTM for the Left Wing versus the Right Wing of the Fuselage.
After drawing one child of a parent, the starting CTM for the next child is the parent’s CTM. This
process repeats as the child becomes the parent, and so on. If we wish to maintain the prior parent’s

CTM as we display each parent-child-child in a depth-first manner, we must store all the prior
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Outboard Inboard Outboard Inboard
Engine N Engine Engine Engine
Left Left Right [~ Right
Mg =T(C,0) Mg =T(B,0) Moger=T(C,0) Mr=T(B.,0)

Figure 9-30. Numerical Airplane Hierarchy Example.

CTM'’s in a LIFO (last-in first-out) CTM stack. A stack is simply an array structure that has a top
element index, or stack pointer.

Prior to concatenating a child’s transformation with the CTM, we push the parent’s CTM
onto the stack. This is done by incrementing the stack pointer and copying the CTM into the stack
entity at this pointer.

After the child has been drawn with its CTM, we must restore the prior CTM before
drawing the next child by popping the top element off the stack into the CTM. This is done by
copying the top element (pointed to by the stack pointer) into the CTM and decrementing the stack
pointer. The stack entries, in this case, are transformation matrices. This can be implemented using
a three dimensional array CTMSTACK [i, j, k].

Figure 9-31 illustrates CTM tracing code for this hierarchical data structure.

The execution of the routine in Figure 9-31 using the data in Figure 9-32 is traced in Figure
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void DrawObject ( ObjectPointer object, TransformMatrix ctm )

{
TransformMatrix newctm; /* new matrix allocated each call */
ObjectPointer child;

MatrixMultiply: newctm )object->xform X ctm

DrawData( object->data, newctm );

for (child=object->child; child != NULL; child=child->next )
DrawObject ( child, newctm );

Figure 9-31. Hierarchical Drawing Routine.

- oy (- >

C

Figure 9-32. Example Hierarchy.
9-33. The execution of the routine in Figure 9-31 using the data in Figure 9-32 is traced in Figure

DrawObject( A, I )
newctm] = MA x 1
DrawData( A, newctml )
for( child = B )
DrawObject( B, newctm, )
newctmy = MB xnewctm,
DrawData( B, newctm, )
for( child = C )
DrawObject ( C, newctm2 )
newctm, = Mc x newctm,
DrawData( C, newctm, )
for( child = D )
DrawObject( D, newctm, )
newctm, = MD x newctm,
DrawData( D, newctm, )
Figure 9-33. Trace of Execution DrawObject Routine.

9-33. This type of modeling hierarchy is used in a number of systems and is a standard in the
PHIGS programming system.

Figure 9-34 is an example of a procedural language that implements a 3D modeling
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environment that produces similar effects to our hierarchical data structure. The system

Yb

" bOX "

box := VECTOR_LIST N=5
, 0 Xb
.25, 0
25, 0.25 Yh

. 0.25
, 0; i "house" S

roof := BEGIN_STRUCTURE = 7¢>- L1

TRANSLATE BY -.05,.25; N
SCALE BY 1.4, .2; Xh "
INSTANCE OF box;

END_STRUCTURE; Yhs "houses "

door := BEGIN_STRUCTURE +
TRANSLATE BY .12,0; L I
SCALE BY .2,.8;
INSTANCE OF box; l_]

END_STRUCTURE;

house := BEGIN_STRUCTURE
INSTANCE OF box;
INSTANCE OF roof;
INSTANCE OF door;

END_STRUCTURE;

houses := BEGIN_STRUCTURE
INSTANCE OF house;
TRANSLATE BY .4,0;
INSTANCE OF house;
END_STRUCTURE; etc.

Figure 9-34. The Evans & Sutherland PS300 Hierarchical Modeling Language.

automatically pushes the CTM before an INSTANCE call and pops the CTM afterwards.
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9.6 Review Questions

1. Assume a program has displayed the hierarchical object above in a GRAFIC window using
window to viewport mapping. The window surrounds the data and the viewport is the
entire GRAFIC window. Describe, in step-by-step form, a picking algorithm for selecting
an instance on the screen, given the cursor's viewport coordinates. Use the "first within
tolerance" method. Show and explain all necessary equations and computations.

2. A hierarchical 2D data structure consists of a parent and two child instances of the same
basic object. Show the relative transformations Tp, T1 and T2,in functional form. There are

no scale transformations.

basic object world coordinates hierarchical data structure
Y
w parent
YL Tp
1 child2 parent v
X, child1 ~ child2
1 Xw T1 T2

\ child1
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Chapter 10. 3D Rendering

Three-dimensional (3D) coordinates can be stored easily as data in the computer by adding
the z coordinate. The problem is creating a two-dimensional (2D) image of a 3D scene.

There are three types of such pictorial renderings:
1. Wire Frame. The data is drawn by connecting points with lines or curves. This 1s the
simplest computationally, but is spatially ambiguous. Can you see two ditfcrent views in Figure

10-1?

A
Is line C-D closer or farther away
than line A-B?
C D
B
Figure 10-1. Ambiguity in Wire Frame Images.
2. Hidden Lines Removed (HLR). Only parts of lines or curves which are not covered by other

faces (surfaces) are drawn. HLR involves more complicated and time-consuming computations,

but produces an image with less ambiguity.

A

Is point A closer or farther away
than B?

Figure 10-2. Figure 10-1 with Hidden Lines Removed.

3. Hidden Surfaces Removed (HSR). HSR output requires raster displays. Those parts of

faces not hidden by other faces are shaded (filled with pixels) with colors that indicate the intensity

of light reflecting from the face. This involves more complex and time-consuming computations,
and produces the least ambiguous images. Special lighting effects include reflection, refraction and

shadows to make the image more realistic.
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Shading is based on the intensity of light
reflecting from the faces and indicates their
relative angle to the eye.

Figure 10-3. Hidden Surface Image of Figure 10-1.

10.1 Depth Cueing

The basic problem in 3D rendering is to create the illusion of depth in the 2D image. Several

techniques can be used singly or in combination to help remove ambiguity from the 2D image,

especially for wire frame images.

1. Perspective projection causes 3D parallel lines to converge in 2D to a vanishing point, like

the classic “railroad tracks” pictures.

Pl
]

vanishing
points

Figure 10-4. Perspective Image Showing Converging Lines.

Images that do not use perspective, that is, those in which all parallel lines in 3D remain
parallel in 2D, are termed orthographic. The most common orthographic rendering, the four-view

drawing, in essence “ignores” one coordinate when drawing each 2D orthographic view (Figure

10-5).
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X Y
Top Auxiliary
Side Z X
_ Z
Front Side
X> - Z

Figure 10-5. Orthographic Images in Engineering Drawing Arrangement.

2. Intensity Depth Cueing displays lines farther away from the eye at lower intensities. This
can be done relatively easily in software for constant intensity lines on raster displays. Some high

performance display systems offer this as an option.

3. Stereoscopic Viewing requires two projected views, one computed for the left eye and one
- for the right. Special viewing apparatus is often required. Color can also be used to cue the two
images, such as the red and green lens stereo glasses worn in movie theaters.

4. Kinetic Depth revolves the object dynamically, causing lines farther away to move more
than lines nearer to the eye. This requires dynamic 3D rotation, which is available on many display

devices today (for additional cost, of course).

10.2 3D Data Structures

Points, curves and surfaces are the basic elements of 3D geometry. In general, considering
only the mathematical forms, curves and surfaces are unbounded, meaning they have no start or
end. Lines and planes extend infinitely. Practically, 3D geometry is bounded. A line has end points
and a plane is bounded, i.e. has sides or boundaries. The terms vertex, cggf: and jﬁ: are used to
describe the topological elements of 3D objects related to points, curves and surfaces of geometry,
respectively. A face is a surface bounded by edges, an edge is a curve bounded by vertices, and a
vertex is a point on an object. For example, the cube in Figure 10-6 consists of topological elements

of eight vertices, 12 edges bounded by these vertices, and 6 faces bounded by these edges.
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Geometrically, there are 12 points, each edge is a curve that is a straight line, each face is a planar
surface. As another example, a cylinder has no vertices, two circular edges, and three faces, two

planar (bounded by the edges) and one cylindrical (bounded by the edges).

E F

C D
Figure 10-6. A Cube and its Eight Vertices.

Pictorial representations require different data storage methods. A box. for cxample, with
vertices named A-G, as shown in Figure 10-6, can be stored several ways. The type of storage

method can be dictated by the type of rendering(s) desired.

Wire Frame Representations

This is the “lowest level” of the data storage methods. Only curves (lines) are needed, so
any of the storage methods described in the previous chapter can be used. In Figure 10-6, the data
structure would store the 12 lines: AB, BC, CD, DA, EF, FG, GH, HE, BE, CH, FA, GD.

One approach would be to store the two end points of each line, i.e., (X;,y1,21) and
(X5,¥9,Z7). Notice that this duplicates each point three times (three lines meet at a point in a box),
2:Y2,22 P P

which can cause redundant calculations when transforming the object.
Another storage method, called points and lines, stores points and lines separately. A line
v/——”"«\w\""“‘

[ 15444
1

consists of references to its two end points, analogous to saying “the line starts at vertex “i” and
ends at vertex “j.” The points and lines representation of the cube is shown in Figure 10-7. Notice
that each vertex is stored once, affording efficiency in space and computation time, because
transforming the object involves transforming each vertex only once.

In general, edges can be other than straight lines.This would make it necessary to store the
type of curve or its equation with each edge. The “edge” is still a path between vertices, but now

the description of this path, the curve, would be explicitly given.
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points lines

index ][] il 7\ | index [Start[] [End]]

1 XA YA ZA 1 2

2 X DB [B 2 2 P

3 X z g > i
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Figure 10-7. Points and Lines Data Structure for the Cube in Figure 10-6.

Hidden Line Removal Representations

Removing hidden lines (curves) involves removing curves and parts of curves that are
obscured by faces of the object. The data structure must store more than just lines and points, it
bounded by edges. \

In the cube of Figure 10-6, the faces are planes bounded by lines, i.e., polygons. Polygons
are the simplest form of a face, and are very common among 3D data representations. A first
storage method for polygons might be a list of points, ABCD, ADHE, EFGH, BCGF, ABFE,
CDHG, where each adjacent pair of points in the list, including the last to the first, is a line. This
suffers from the inefficiencies in space and redundant computations noted previously for lines.

Alternatively, a polygon can be stored as a list of references to vertices, similar to the points
and lines logic, called a “points and polygons” structure. The lines structure of Figure 10-7 is
replaced by a polygons structure that has four indices per polygon (in this limited example)
corresponding to the four vertices. Edges would be understood implicitly to be lines between

adjacent vertices, requiring that the list of vertices be properly ordered.

Hidden Surface Removal Representations

The data required for hidden surface removal is an extension of that for hidden line
removal. In addition to the geometry of each face of the object, the light reflectance properties of
the face must also be stored. Also, the lighting conditions of the surrounding environment are

needed.
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10.3 Planar Geometric Projections

Planar geometric projection involves transforming 3D coordinates onto an image plane

(also called projection plane) in space, and using the resulting plane coordinates to draw the image.

There are two forms of planar projections:

1. Parallel Planar Projection e g
Parallel projections have the center of projection, the “eye point” toward which points are

projected, infinitely far from the image plane. There are two kinds of parallel projections:
(A) Orthographic Parallel Planar Projection: The projection direction is normal to the
image plane. There are two kinds of orthographic projections:

Axonometric: the image plane is normal to a principal plane, i.e. top, front
and side views.

Isometric: the image plane is not normal to a principal plane.
(B) Oblique Parallel Planar Projection: The projection direction is not normal to the image
plane.

cabinet: cot(angle) = 1/2 (angle is about 63 degrees)

cavalier: 30 or 45 degrees.

2. Perspective Planar Projection
The center of projection is a finite distance from the image plane.

10.4 Perspective Projection

First we will study wireframe perspective drawing. Consider an eye coordinate system

XYZ, shown in Figure 10-8.

Let the XY plane (Z=0) be the image plane, also called the picture plane. A point in 3D
space, (X,Y,Z), is projected onto the image plane by finding the intersection with the image plane
of a line from the data point in question (X,Y,Z) to a given center of projection (COP). This line is

called a projector. Thus (le,Ylp) is the projected 2D image of (Xl,Yl,Zl), and similarly for

(X, Y, )and X, Y, Z).

After perspective projection, lines remain lines and planes remain planes (this will be
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projectors

Figure 10-8. The Eye Coordinate System and Projected Lines.

shown mathematically later). Therefore, the image of a 3D line from point 1 to point 2 is the line
connecting the projected points. Angles, however, are not preserved after perspective projection.

To derive the perspective equations, first look down the X, axis (Figure 10-9).

ZC
— o ]
- - q P> X (out of page)

Figure 10-9. Viewing a Line Looking Down the X, Axis.

Using similar triangles, relate Yp tod, Y and Z:

d -
Y Y73

o
W
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Now find X, by looking down the Y, axis (Figure 10-10).

-»n X)Y,Z)

b o—— —
Y, (out of ﬂ/
o (out of page) ; > X,

Ze
Figure 10-10. Viewing a Line Looking Down the Y Axis.
x =x-4 - X(l—%)-l
P d-2Z" d

a4
d-Z

, also shown as is the perspective factor and is a function of the distance d

(%
of the eye from the image plane and the z coordinate of the given point.

After perspective, when the data lies on the picture plane, we can use the standard two-
dimensional techniques to draw it.

Examine the perspective factor more closely.

1. When z — -4, i.e., for data points far from the eye:

d
lim (—) =0
z——oo\d =2

Therefore (Xp,Yp) — (0,0). The points converge to the origin.

2. When d — e, i.e., when observing from infinitely far away: ,
d o
lim (__) -1 g d
d—\d=2 ><F“><’L A-Z /

Therefore (Xp,Yp) — (X, Y). This is parallel projection. So, perspective projection from

infinitely far away becomes parallel projection.

‘o N —y A i d o
N R =l N e - i £ N e LD E
//-/‘7{/&{.;’9/‘ Tyl !Z»»’T'K"f"'n‘.»;a

/ / f

/ / /
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3. When z > d, i.e., the data point is behind the COP:

((Tc_lz) = “a negative number”

Therefore (Xp, Yp) = (a negative number) x (X, Y). This causes inversion of the image, or

“false projection.”

\ 4 Ye
N\
Neof
< —
Ze NG

14
Figure 10-11. Inversion of Data Behind the COP.

4. When z — d, i.e., a point in the plane of the eye:

z—>d d-

The perspective factor approaches infinity, causing a severe lens distortion effect as objects
approach the COP plane. Computationally, this is a problem that must be handled in code,
as described later.

5. When z = 0, i.e. data points on the projection plane:

(a2 =

Points on the projection plane are not affected by perspective.

Figure 10-12 summarizes these different regions along the Z axis and their projection
characteristics.

There are other definitions for the eye coordinate system. One of the early definitions for

the eye coordinate system places the COP at the origin and the image plane at the location z=d in

a left-handed reference system.

To derive the perspective factor for this system, again look at parallel orthographic

projection, i.e., looking down the X, axis (Figure 10-14).
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z<d z=d O<z<d z<0

Figure 10-12. Effects of Data Z Values on Projection.

Y
¢ o Z,. (into page)

image plane @ z=d

Xe

COP S -
Figure 10-13. A Left-Handed Eye Coordinate System.

YCA d - (X)Y.2)
- L / Yp %
d°-Z
¢ Yy so:
>Ze YP = Y%
X, (out of page) - =

Figure 10-14. Looking Down X, in the Left-Handed Eye Coordinate System.

Similarly, we find X, =X % . This appears simpler than the previous perspective equations, but has

limitations for some applications, such as hidden surface removal, as we’ll see later.

10.5 3D Modeling Transformations

Before advancing, consider 3D transformations, this time going directly to matrix and

functional forms. The 3D vector consists of four elements: [X, y, z, 1], and the homogeneous

transformation matrix is four by four.

1. Translation: T(Tx, Ty, Tz)
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1 000
0 1 00 Voo e M (rovs yectonr)
I:x'y'z' l:l = [XyZl:]
0 010 ool e
Tx Ty Tz 1
2. Scaling : S(Sx, Sy, Sz) L
Sx 0 0 0
A 0Sy 00
[xyzl]—[xyzl]ooszo
10 0 01

3. Rotation: Rx(0), Ry(8), Rz(0). -z,

There are three basic rotations about each principal axis:

Rotation about X, Rx(0):

1 0 0 O

0 sind
vz ] =boedlg S S

0 O 0 1

Rotation Matrix Clues:

1. Rotating about X (Y or Z) does not change X's (Y's or Z's)

2. Row 4 and column 4 are always the same.

3. The problem is to locate the cos (C) and sin (S) elements:
C S
S C

and to place the minus sign before one of the S terms. To do this, rotate an obvious point,

like [0,1, 0] about the axis 90°. For X:

Figure 10-15. Test Rotation about the X Axis.
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— C

(0.0.0) ]2

Rotation about Y, Ry/(0):

~]
@M

S—

cos0 0 —sin® 0

[X' y'z 1] ) [xyz 1] si(r)lﬂ(l) cc?sG 3
0 0 0 1

X

Rotation about Z, R(0):

cosO sin6 00

[x' y' z' 1:| = [x y z 1] —s(i)ne C(;)Se (1) g

0 0 01

10.6 Homogeneous Coordinates

We have simply ignored the fourth coordinate of vectors and the last column of matrices.
For representing translation in matrix form and to make the transformation matrices square, we
have set the fourth coordinate of a vector to 1: [x,y,z,1] and the last column of matrices to
[0,0,0,1]".

Now we will generalize this notation and give deeper geometric interpretation to it. A point
in 3D space is a projection of a point in 4D space given by the coordinates [wXx, wy, wz, y[g], the

homogeneous coordinates of a point.

Define normalized homogeneous coordinates as coordinates having a unity value of w. The

[X, y, z] values are the 3D space coordinates only when w=1, i.e., only if the coordinates have been

normalized. Thus, [2, 4, 6, 2], [0.5, 1.0, 1.5, 0.5] are the same normalized coordinates, [1, 2, 3, 1],
which is the 3D point [1,2,3].

In general, to find the normalized 3D coordinates, simply divide by the “w” coordinate, i.e.,
[wx Wy Wz ]

w' w’w’
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To see the benefits of this convention, examine a general 4x4 homogeneous transformation matrix:

_a b ¢ p_
d e f q
g h 1 r
1 m n S
1. (a-1): Scaling and rotation elements.
2. (I-n): Translation.
3. s: This is the homogeneous scaling element. Examinc w hat happens when we

transform a normalized coordinate by a matrix with a variable ‘s’ clement:

1000
[xyzljg(l)(l)g*[xyzs]
000s

of (X

After normalization, the coordinates are [’.‘ yz 1] . The net effect is to uniformly scale the
s S s

3D coordinates by st

7

A £
4.  _p.g.r: These are projection elements. Begin by examining the effects of a transformation

with a variable ‘r’ and ‘s’ elements:

1000
[xyzl]g(l)(l)(r)‘“*[xyz(rz+s)]
000 s

Now normalize,

[xyz(rz+s):|“)li X Y z 1iI,if'((1’Z+S)¢0)
IZ+S TZ+S 1Z+5

Lettings=1andr= —% , where d is the distance from the eye to the image plane,

- ) T . D
This is perspective projection. Thus, due to the convention that normalization introduces
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division, perspective can be represented as a transformation in matrix form. The perspective

_matrix, P, is:

(100 0] yoormelaed s w e
Vi
010 0 —
P = 1 w0
O O 1 = et e e e TP P NS
d Cloxizoid - (2, 3.4 1)
000 1 I

The interpretation of the homogeneous vector [X,y,z,0] is a point at infinity on a line from the origin

through [x,y,z]. In other words, the vector [x,y,z,0] is a direction vector. This is a consistent

interpretation when one considers that subtraction of two position vectors with the same ‘w’
coordinates will result in a direction vector with a 0 ‘w’ coordinate. The ability to represent points
at infinity is another benefit of homogeneous representation.

Project the point [0, 0, d, 1]:

(100 0
010 0

[00d1]001__§ =[0o0do0

000 1]

This is the point at infinity on a line from the origin through [0,0,d]. Therefore, the COP projects

to the point at infinity on the Z, axis.

10.7 Viewing Transformations

The projection of 3D data onto an image plane at z = O requires that the data be defined
relative to the eye coordinate system, where the observer’s eye, i.e. the COP, is at a point (0,0,d)
and is looking toward (0,0,0). In general, one may want to observe data from some other position
and direction that, in general, can be specified as a view vector. The data and view vector are given
in world coordinates. Consequently, data must be transformed from world coordinates into eye

coordinates before perspective can be performed (analogous to translating before scaling when
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YW s 1y
A View Vector
O‘/E%E point
/ AIM point
- Xw
X1,Yi,Zi Data

ZW
Figure 10-16. World Coordinate System and View Vector.

“scaling-about-a-point™). This transformation, called the viewing transformation, V, relates the eye

coordinate system to the world coordinate system.
Where is the eye coordinate system? One answer is to use the view vector to define the eye
coordinate system.
AIM,, — (0, 0, 0),
EYE,, — (0,0, d),

Y, %
A e X,
Ze
EYE
XW

Data in World Coordinates

ZW
Figure 10-17. World and Eye Coordinate Systems.

For now, also make the arbitrary specification that the Y, axis will be “vertical,” i.e. the
plane Xe=0 will be perpendicular to the plane Yw=0. This means that the observer stands up-right
with respect to Y,, when viewing the data in the world coordinate system. This specification will
be relaxed later. Of course, the plane Z, = 0 is the image plane, and the Z, direction is the normal

to the image plane.
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The objective is a viewing transformation, V, that transforms a point in world coordinates

into the corresponding point in eye coordinates:
P. =P,V b poiwl C(posiTicn vecTor)
Visualize the process as transforming the view vector to align the Z, axis with the Z,, axis. This

can be accomplished using three basic transformations:

1. Translate the vector so that AIM,, — (0, 0, 0),
2. Rotate the result so that the transformed EYE' swings into the XW=0 plane.
3. Rotate this result so that EYE" swings down onto the Z“ axis.

The matrix equation becomes:

P.= P, T(?) R(?,7) R(2,7)
Hence,

V=T R R(®?
Step one. This is just a translation:

P' = P, T(-AIM)

After the translation, the situation is as shown in Figure 10-18.

Y,

A

_ EYE=EYE-AIM
EYE" .
4——/ EYEy X
- Aw

EYE,

ZW

Figure 10-18. View Vector After Translation.

Step 2. Rotate o about YW to swing EYE' into the X,=0 plane.

. -1 EYE'x
Using trig: o = —tan

EYE,

Check the sign by noting the rotation direction assuming positive values. Note that EYE',
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. ) o T )
can be 0, and that the tan ! function returns angles between 5 and 3 therefore we must code this

using the ATAN2(EYE',,EYE',) function.
There is still a problem, however, in that EYE', and EYE', may both be zero if the view
vector is parallel to the Y, axis. In this case, ATAN2cannot be called. Set o = 0.

Step 3. Swing EYE" down by f to (0,0,d) by rotating about XW.

_ EYE'
B = tan ! Y

2 2
EYE “+EYE,

To check the transformations, try “data points” AIM and EYE. You should know what the
results should be: (0,0,0) and (0,0,d).
For example, consider Figure 10-19. We first compute EYE'=EYE - AIM = (0,1,0). Then,

Yw

EYE=(0,1,0)

Ye
View Vector

< ([}]

=(0,0,0
Zw AIM=(0,0,0)

Figure 10-19. Example View Vector.
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following the steps above,
~1(E iE'x -1/0 .
o = —tan = —tan ( -—) = 0(by assignment)

EYE, 0
_ EYE' _
l3=tan1 Y =tan1( 1 ):g’
JEYE'XZ +EYE,” N0 +0

V = T(0, 0, 0)R(0, Y)R(g, X)

1 0 o0 o
- 1000
0 cos= sin= 0
v=mm| 22 =08
0 —sinZ cos¥ 0 -
22 0001
0 0 o0 1

As a check, we transform AIM and EYE,
AIM V = (0,0,0),
EYE V =(0,0,1).

Also note that the XYZ, axes, treated like data, will align with the XYZ, axes when
transformed by V.

The EYE-AIM method just described can be far too restrictive for some applications.
Imposing the condition that “d” is the distance between EYE and AIM can be awkward. It may be
useful to consider this EYE-AIM view vector approach as an internal representation for the
viewing information and give the user alternative methods for specifying the viewing position,
direction and perspective distance.

An example of one alternative is using polar (or spherical) coordinates: R, azimuth and
elevation, for a viewing sphere with a given center C. This is useful for viewing an unchanging
object as though it were at the origin of a sphere of radius R. Consider viewing the earth as an
example. Azimuth is the angle of rotation about the earth’s axis, i.e. east-west motion, which in
XYZ,, notation means a rotation about the Y axis. Elevation is the angle from the equator, i.e.
north-south motion, that is a rotation about the X axis.

The radius of the viewing sphere, R, and its center, C, are usually computed to surround

the 3D data. One can compute a “bounding sphere” for the data, or more simply, compute a
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elevation
(inclination)

p X
Radius R

azimuth

Figure 10-20. Viewing Sphere and Polar Coordinates.

parallelepiped with corners [xmin,ymin,zmin] and [xmax,ymax,zmax]. The sphere center C is then
the midpoint of the diagonal connecting the corners, and R is half the length of the diagonal.
Given the viewing sphere, the user specifies viewing information as “elevation up, azimuth
to the right.” The problem is to compute EYE and AIM from this information, and then compute
V as before. One approach is to set AIM = C, i.e. always look toward the center of the sphere. After
all, this is the center of the data. To compute EYE, think of transforming a vector of length d along

the Z axis (parallel to Z,,) through C by the elevation and azimuth rotations, then adding this vector

to AIM:
EYE = [0,0,d,0] Rx( -elevation ) Ry( azimuth ) ® AIM
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